Annual reports on NMR spectroscopy

Volume 20

ANNUAL REPORTS ON

NMR SPECTROSCOPY

This Page Intentionally Left Blank

ANNUAL REPORTS ON NMR SPECTROSCOPY

Edited by

G. A. WEBB

Department of Chemistry, University of Surrey, Guildford, Surrey, England

VOLUME 20

1988

ACADEMIC PRESS

Harcourt Brace Jovanovich, Publishers

London · San Diego · New York Boston · Sydney · Tokyo · Toronto

ACADEMIC PRESS LIMITED 24/28 Oval Road, LONDON NW1 7DX

U.S. Edition Published by

ACADEMIC PRESS INC. San Diego, CA 92101

Copyright © 1988 by ACADEMIC PRESS LIMITED

All Rights Reserved

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system without permission in writing from the publisher

British Library Cataloguing in Publication Data

Annual reports on NMR Spectroscopy, Vol. 20
1. Nuclear magnetic resonance spectroscopy
—periodicals
541.2'8 QD96.N8.
ISBN 0-12-505320-7
ISSN 0066-4103

Typeset by EJS Chemical Composition, Midsomer Norton, Bath and printed in Great Britain by St Edmundsbury Press, Bury St Edmunds, Suffolk

List of Contributors

Dr Peter P. Edwards, University Chemical Laboratory, Lensfield Road, Cambridge, CB21EW, UK.

Dr Ahmed Ellaboudy, University Chemical Laboratory, Lensfield Road, Cambridge CB21EW, UK.

Dr Dolores M. Holton, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Dr P. G. Morris, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK.

Dr Nicholas C. Pyper, University Chemical Laboratory, Lensfield Road, Cambridge CB21EW, UK.

Dr A. R. Siedle, Corporate Research Laboratories/3M, 3M Center, P.O. Box 33221, St Paul, Minnesota 55133-3221, USA.

Professor B. Wrackmeyer, Laboratorium für Anorganische Chemie, Universität Bayreuth, Postfach 10 12 51, D-8580 Bayreuth, Federal Republic of Germany.

This Page Intentionally Left Blank

Preface

Volume 20 of Annual Reports on NMR Spectroscopy consists of accounts covering three main areas of molecular science. NMR of living systems is covered, for the first time in this series, by Dr P. G. Morris. Various aspects of boron NMR are dealt with in two, largely complementary, chapters by Professor B. Wrackmeyer and Dr A. R. Siedle. This topic has previously been reviewed in Volume 12 of this series. The third area to be reported on is that of NMR studies of alkali anions in non-aqueous solvents by Drs P. P. Edwards, A. Ellaboudy, D. M. Holton and N. C. Pyper. It is a great pleasure for me to record my thanks to all of the contributors for their considerable efforts in the preparation of their reports.

University of Surrey Guildford, Surrey England G. A. WEBB

This Page Intentionally Left Blank

Contents

Preface	vi
NMR Spectroscopy in Living Systems	
PETER G. MORRIS	
I. Introduction	1
II. Sample preparation	2
A. Cells	2 7
C. Intact animals	12
III. Localization methods	13
A. Introduction	13
B. Localized spectroscopy	14
C. Spectroscopic imaging	19
IV. Measurement of intracellular cations	21
A. Introduction	21
B. Calcium and zinc indicators	22
C. Magnesium indicators	26
D. Sodium and potassium measurement	28
E. Intracellular pH measurement	30
F. Applications	33
V. Enzyme kinetics	41
A. Introduction	41
B. Introduction to magnetization-transfer methods	42
C. Saturation-transfer methods	43
D. Inversion-transfer experiments	46
E. Two-dimensional exchange experiments	47

F. Applications and practical difficulties of magnetization-transfer methods . . .

49

x CONTENTS

Nuclear Magnetic Resonance Spectroscopy of Boron Compounds Containing Two-, Three- and Four-Coordinate Boron

BERND WRACKMEYER

I.	Introduction						61
II.	Experimental						63
	A. General procedures, referencing						63
	B. Nuclear-spin relaxation						65
III.	¹¹ B nuclear magnetic resonance						68
	A. Chemical shifts, $\delta^{11}B$						68
	B. Substituent effects on 11 B-chemical shifts, δ^{11}	В					71
	C. Indirect nuclear spin-spin couplings $^nJ(^{11}BX)$						160
IV.	NMR of nuclei other than ¹¹ B and ¹ H						168
	A. ⁶ Li and ⁷ Li NMR						168
	B. ⁹ Be NMR						168
	C. ¹⁰ B, ²⁷ Al and ⁷¹ Ga NMR						168
	D. ¹³ C NMR						169
	E. ²⁹ Si, ¹¹⁹ Sn and ²⁰⁷ Pb NMR						174
	F. 14N and 15N NMR						175
	G. "P NMR						178
	H. ¹⁷ O- and ⁷⁷ Se NMR						178
	I. ¹⁹ F, ³⁵ Cl and ³⁷ Cl NMR						180
	J. NMR of transition-metal nuclei						181
	Acknowledgments						181
	References						182

¹¹B NMR Spectroscopy

A. R. SIEDLE

I.	Introduction									20
II.	Spectroscopic techniques and general results									20
III.	Analytical applications									20
	One-boron compounds									
	A. Analogues of pharmacologically active co	mp	ou	nd	•					20
	B. Cationic boron compounds									
	C. Compounds with multiple bonds to boro									
	D. Pyrazaboles					,				21
	E. Boron-containing heterocycles									
	F. Alkylboranes and related compounds.									22
	G. Other one-boron compounds									

CONTENTS	xi

V.	Polyboranes and carboranes									233
	A. $B_{2,3}$ boranes and carboranes									233
	B. B ₄ boranes and carboranes									235
	C. B_5 boranes and carboranes									237
	D. $B_{6,8,9}$ boranes and carboranes									240
	E. $B_{10,11,12}$ boranes and carboranes									251
VI.	Metalloboranes and metallocarboranes	Ī							Ċ	254
	A. B ₁ metalloboranes and metallocarboranes	·						Ċ	Ċ	254
	B. B _{2,3,4} metalloboranes and metallocarboranes	Ċ								259
	C. B _{5.7.8} metalloboranes and metallocarboranes									263
	D. B ₉ metalloboranes and metallocarboranes			•	•	•	•	•	•	275
	E. B ₁₀ and larger metalloboranes and metallocarborane			•	•	•	•	•	•	285
VII	Coupled boranes and carboranes			•	•	•	•	•	٠	294
	Transition-metal complexes of boron-containing heteroc				•	•	•	•	•	299
	¹¹ B NMR studies of solids					•	•	•	٠	302
IX.				•	-	•	•	•	•	305
	Acknowledgments		•	•	•	•	•	•	٠	306
	References	•	•	•	•	•	٠	•	•	300
	PETER P. EDWARDS, AHMED	EL	L	A]	ВС	JC	JΓ	Υ	7,	
D	PETER P. EDWARDS, AHMED OLORES M. HOLTON and NICH	EL OL	\mathbf{A}_{i}^{L}	AI S	B(C	Σ	JE P	Y Y I	?, PE	R
D	OLORES M. HOLTON and NICH	EL OL	A_{i}^{L}	AI S	B C	ΣŪ	JE P'	YI	ſ, PE	.R 315
DO	OLORES M. HOLTON and NICH	OL	. A :	S			JE P`	Y I	΄, PE	315
I. II II. N	ntroduction	OL		S	C :		P`	Y I	?, PE	315 318
I. II. N	ntroduction	OL			· .		P`	Y I	?, PE	315 318 318
I. In II. N	ntroduction	OL utra	. A :		s		P`	Y I	(, PE	315 318 318 326
I. II. N	ntroduction	OL	. A	S om:	C s all		P`	Y I	?, PE	315 318 318 326 327
I. In II. N	ntroduction	OL utra or ga		S om: ous	C s all		P`	Y I	, PE	315 318 318 326 327 331
I. In II. N	ntroduction	OL utra or ga		S om:	C s all		P`	Y I	(, PE	315 318 318 326 327 331 332
I. In II. N	ntroduction	oL utra or g	. A	S			P`	Y I	, PE	315 318 318 326 327 331 332 332
I. In II. N A B C C III. S A	ntroduction	oL utra or g		S om: ous	C s all		P`	Y I	, PE	315 318 318 326 327 331 332 332 332
I. In II. N A B B C C III. S A B B B	ntroduction	oL	. A	S			P`	Y I	· · · · · · · · · · · · · · · · · · ·	315 318 318 326 327 331 332 332 332 334
I. II. NA A COLOR STATE OF THE	ntroduction	oL	. A	S			P`	Y I	·	315 318 318 326 327 331 332 332 332 334 338
I. II. N. A. E. C.	ntroduction	oL	. A	S			P`	Y I	· · · · · · · · · · · · · · · · · · ·	315 318 318 326 327 331 332 332 332 334 338 346
I. In II. N	ntroduction	oL	. A	S			P`	Y I	· · · · · · · · · · · · · · · · · · ·	315 318 318 326 327 331 332 332 334 338 346 348
I. In II. N	ntroduction	oL	. A	S			P`	Y I	·	315 318 318 326 327 331 332 332 334 338 346 348 348
I. In II. N. A.	ntroduction	oL	. A	S			P`	Y I	? , • • • • • • • • • • • • • • • • • • •	315 318 318 326 327 331 332 332 334 338 346 348 348 357
I. In II. N. A.	ntroduction Suclear shielding in the alkali anions A. Assignment of the resonance B. Experimental nuclear shieldings relative to gaseous ne C. Reliable calculations of nuclear-shielding differences for Deduction of the nature of M in solution B. Summary Colution structure of Na probed by relaxation measurem A. Experimental results B. Theoretical considerations C. Quadrupolar relaxation D. Summary Chemical dynamics in alkali-metal solutions A. The sodium anion B. Caesium-based species Coverall conclusions	oL	. A	S			P`	Y I	? ,	315 318 318 326 327 331 332 332 334 338 346 348 357 362
I. In II. N. A.	ntroduction	oL	. A	S			P`	Y I	, PE	315 318 318 326 327 331 332 332 334 338 346 348 348 357
I. In II. N. A.	ntroduction Suclear shielding in the alkali anions A. Assignment of the resonance B. Experimental nuclear shieldings relative to gaseous ne C. Reliable calculations of nuclear-shielding differences for Deduction of the nature of M in solution B. Summary Colution structure of Na probed by relaxation measurem A. Experimental results B. Theoretical considerations C. Quadrupolar relaxation D. Summary Chemical dynamics in alkali-metal solutions A. The sodium anion B. Caesium-based species Coverall conclusions	oL	. A	S			P`	Y I	, PE	315 318 318 326 327 331 332 332 334 338 346 348 357 362

This Page Intentionally Left Blank

NMR Spectroscopy in Living Systems

PETER G. MORRIS

Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK

I.	Introduction										1
II.	Sample preparation										2
	A. Cells										2
	B. Isolated organs										7
	C. Intact animals										12
III.	Localization methods										13
	A. Introduction										13
	B. Localized spectroscopy										14
	C. Spectroscopic imaging										19
IV.	Measurement of intracellular cation										21
	A. Introduction										21
	B. Calcium and zinc indicators .										22
	C. Magnesium indicators										26
	D. Sodium and potassium measu										28
	E. Intracellular pH measurement	t.									30
	F. Applications										33
V.	Enzyme kinetics										41
	A. Introduction										41
	B. Introduction to magnetization	ı-tran	sfer	metl	nods						42
	C. Saturation-transfer methods										43
	D. Inversion-transfer experiment	ts									46
	E. Two-dimensional exchange ex	peri	nent	s							47
	F. Applications and practical d	lifficu	ılties	of	mag	gneti	zatio	on-t	rans	fer	
	methods										49
	References										51

1. INTRODUCTION

In vivo spectroscopy emerged as a viable technique in 1973 when it was demonstrated that well-resolved ³¹P NMR spectra could be recorded from suspensions of intact red blood cells. ¹ In the following year similar spectra were recorded from intact tissue—a freshly excised muscle from the hind limb of a rat. ² At the same time, NMR imaging techniques were being developed by Lauterbur ³ in SUNY at Stonybrook and by Mansfield ⁴ in Nottingham. These techniques were to develop within a decade into

arguably the most powerful diagnostic modality of the 1980s⁵—magneticresonance imaging or MRI. In vivo spectroscopy too has developed into a full-blown clinical diagnostic technique. However, the main thrust of scientific endeavour in this case has been concerned with the development of a biochemical understanding of normal and pathological states. These more fundamental objectives have meant that isolated tissue and animal models have retained their importance. Indeed, interest in them is increasing stimulated by possible future clinical applications. The development of MRI and in vivo spectroscopy (sometimes referred to by clinicians as magnetic-resonance spectroscopy or MRS) have proceeded in parallel, with rather little in the way of cross-fertilization. Thus on several occasions scientists developing MRI methods have rediscovered (and generally renamed) pulse sequences well known to high-resolution spectroscopists. Equally, the value of selective excitation methods for conventional NMR is only just beginning to be appreciated with the advent of the first generation of high-resolution spectrometers equipped with this capability.

In the first three years since "NMR of Living Systems" was reported on in the Royal Society of Chemistry's Specialist Reports on NMR, the volume of literature (MRI and spectroscopy taken together) has doubled each year, eventually necessitating a narrowing of the field of review to exclude clinical MRI. The policy that has been adopted for the present review is to concentrate exclusively on in vivo spectroscopy. MRI is discussed only in cases where it is directed towards this end, i.e. chemical-shift imaging. For those interested in gaining an understanding of MRI techniques, several books are available. 6-11 Literature searches, including clinical applications, can be most productively conducted on the MEDLINE database. The emphasis in this chapter is on descriptions of techniques with more selective examples of their application. Greater accent is given to important emerging techniques, e.g. new methods for intracellular cation measurement, and to topics that have not themselves been subject to recent review. A comprehensive account of NMR studies in living systems is not intended: such an undertaking would require a work of several volumes. For those wishing to keep abreast of the rapidly expanding literature in this area, the SPRs on NMR are recommended.

Of the NMR nuclei that are of biomedical importance, ³¹P remains the most popular by far, both for animal studies, and for clinical applications. ^{12,13} ¹³C methods continue to be widely used in the elucidation of biochemical pathways and in the measurement of fluxes through them. ¹⁴ This is particularly the case for microorganisms, where uncertainty in this area still remains. Such methods have been used less widely *in vivo*, ¹⁵ where the high cost of labelled compounds and the relatively low sensitivity of ¹³C

have proved prohibitive. Indirect observation via coupling to ¹H offers some improvement, ¹⁶ at least in the latter respect.

Perhaps the biggest growth area in this field is in the direct application of ¹H NMR. The attraction here is clearly the high inherent sensitivity and universality of this nucleus. What has held back its development so far has been the concern over spectral complexity and, more importantly, a major dynamic-range problem. Thus it is often necessary to observe metabolites at concentrations < 1 mm, in the presence of 100 m water, a dynamic-range problem of some five orders of magnitude. Sophisticated solventsuppression methods¹⁷ are making some inroads, particularly when combined with spin-echo techniques. 18,19 However, there is a second suppression problem, which arises from the broad -CH₂- resonance of mobile lipids present at concentrations up to 1 m. This is a particularly thorny problem since this spectral region includes many resonances that are of interest. Suppression techniques therefore need to be very "clean". The complexity of ¹H NMR spectra is now seen as less of an embarrassment. However, spectral editing techniques are available if required. 18,20 Since these rely on difference methods, they also serve to alleviate the solventsuppression problems.

It is likely that there will be sustained growth throughout the field of "NMR of Living Systems", with ¹H studies figuring more prominently once the dynamic-range problems are successfully overcome.

II. SAMPLE PREPARATION

A. Cells

For biological systems, the only acceptable means of combatting the fundamental insensitivity of the NMR technique are to work at high field and to use large samples. Ideally, the largest volume consistent with adequate resolution should be employed. The sample also needs to be in its most "concentrated" form: in the case of cellular systems this means high cell densities, typically in the range $10^7 - 10^{12}$ cells ml⁻¹. Maintaining such a "sludge" of cells in situ and in a viable condition are difficult problems, which have not yet been resolved entirely to everyone's satisfaction, as evidenced by the continually growing literature on the subject.

Three basic requirements have to be met: (i) the cells must be kept in uniform suspension throughout the NMR-sensitive volume; (ii) they must be suitably perfused so that nutrients are delivered and waste products eliminated; (iii) in the case of aerobic cells, adequate oxygenation must also

be ensured. It is of course important that the medium chosen be appropriate to the cell type under study and that adequate pH buffering be provided.

Various techniques have been suggested for preventing sedimentation. Gentle stirring with a motor-driven propeller works reasonably well.²¹ (See Fig. 1 and refs 22 and 23 for a description of hardware developed for tissue superfusion but which is also useful for cell studies.) A gentle cyclic pump

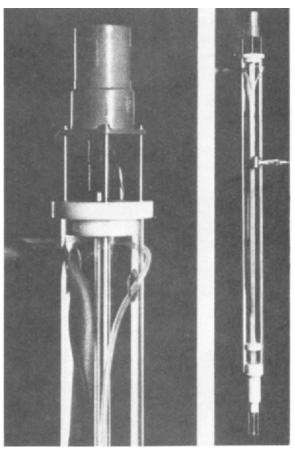


FIG. 1. Tissue superfusion apparatus. Tissue slices are maintained in uniform suspension in the 25 mm NMR tube (lower right) by a combination of the upward current from circulating perfusate and gentle stirring with a motor-driven paddle. Perfusate is introduced via a water-jacketed line (detail, left side) and is removed at a higher level by suction through a second unjacketed line (detail, right). A perforated PTFE disc safeguards against accidental loss of tissue. The PTFE plug retaining the NMR tube mimics a conventional spinner, enabling the assembly to be used with a conventional 25 mm probehead. From ref. 23.

action is also efficacious. One good solution recently described is the use of density-matching techniques. Addition to the suspension medium of the polysaccharide arabinogalactan has been demonstrated to be effective. If the cell suspension is to be studied under aerobic conditions, the simplest procedure is to gas the cells in situ with O₂ (or 95% O₂:5% CO₂ if a bicarbonate buffer is employed). This has the benefit of keeping the cells in suspension. However, streams of bubbles can adversely affect the field homogeneity and often, though not invariably, present problems. Smaller bubbles are generally less disruptive, and so fine jets or sinters are the order of the day. Another possibility is to gate the bubbling so that it takes place outside the period of signal acquisition. Fluid-logic needle valves and solenoids are especially useful for setting this up.

If medium- or long-term studies are envisaged (and the lack of sensitivity normally makes them necessary), some form of perfusion system will be required. Given that this is the case, it is then sensible to conduct the oxygenation in a region remote from the cell chamber. If there is no sample limitation (large numbers of cells are readily available), it is possible to circulate the entire cell suspension. Provided this is done sufficiently rapidly that the contents of the sensitive volume are exchanged on a timescale short compared with the T_1 s of the species under study, sensitivity advantages also accrue.

Usually cells are not available in such abundance and it is necessary to circulate the medium through the cell suspension. The problem is then one of constraining the cells. Several ingenious solutions have been advanced. Dialysis fibre bundles are extremely efficient 26,27 and can conveniently be obtained from kidney-dialysis fibre mats. However, cellulose acetate fibres are rather delicate and prone to fracture. They should therefore be used with caution; leakage protection should always be provided. An extra levelmaintaining suction line is a suitable security device. For anchoragedependent cells it is possible to culture the cells on polymeric membrane tubes through which the perfusate is circulated. 28 See ref. 29 for a general review of tissue culture by perfusion through artificial capillaries. An alternative strategy for anchorage dependent cells is to attach them to autoclaved microcarrier beads. ^{30,31} After growth to the required cell density, the beads are transferred to the NMR chamber and are held in place during perfusion with fine-mesh screens. Another strategy, applicable to a wider range of cells systems, including surface-independent cultures, is the use or agarose gel threads.³²⁻³⁵ Cells are mixed with low-gellingtemperature agarose solution at 37 °C and are then coextruded under mild pressure through Teflon tubes immersed in an ice/water bath. Cell concentrations comparable to those of dense cell suspensions can be achieved and the small diameter (0.5 mm) of the threads ensures proper

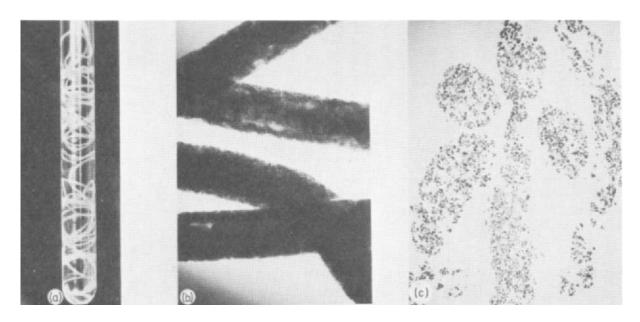


FIG. 2. (a) The gel threads containing the cells were extruded through thin tubing into the growth medium containing 20 mm Hepes buffer, which was maintained at pH 7.35-7.40. (b) Phase-contrast microscopy ($\times 100$) of the gel threads, showing a high density of fibroblasts throughout the gel matrix. (c) Paraffin-block sections ($7-8\,\mu\text{m}$) of the gel threads, fixed with Bouins stain. Intact nuclei with prominent nucleoli in the cells are visible. From ref. 35.

perfusion. Diffusion of nutrients to the centre of the thread typically requires about 1 min. The spaghetti-like nature of this preparation is illustrated in Fig. 2. The technique has been successfully demonstrated both with yeast³³ and with mammalian cells (chinese hamster lung fibroblasts³⁵).

B. Isolated organs

1. Non-perfusion techniques

Isolated organs are well-suited to NMR study since specialist equipment is not essential and it is often possible to make use of conventional probeheads by replacing the NMR sample tube with a suitably equipped organ bath.

The simplest possible way in which to conduct an NMR experiment on an intact organ is to surgically remove it and place it in an NMR tube, perhaps surrounded by medium. Indeed, a simple ³¹P NMR study of excised muscle was the experiment that first drew the attention of the scientific world to the possibilities of the technique.² Such crude methods are generally not very useful since, deprived of the normal provision of oxygen and nutrients through the vascular system, the organ quickly perishes. Amphibian muscle, however, is a notable and very useful exception. Frog gastrocnemius muscles excised under refrigerated conditions and placed in Ringer maintained at 4°C remain viable for many hours. With a stimulation system and a force transducer for measuring developed tension, such muscles can be studied during anaerobic exercise. Pioneering work³⁶⁻³⁸ on frog muscle with the apparatus illustrated in Fig. 3 (now in the London Science Museum but still functional and occasionally called into service!) demonstrated the benefits of combining ³¹P NMR determinations of bioenergetic status and intracellular pH (see Section IV) with standard physiological measurements.

Simple bathing of an intact organ in Ringer is, as discussed, not generally appropriate if one is seeking to preserve normal physiological and metabolic status. However, it is entirely appropriate for model studies of transplant organs, such as the kidney, where it is precisely the time course of this deterioration that is of interest. ^{39,40} It is also useful for tissues that are naturally poorly perfused (e.g. the eye lens ^{41,42}) and thin (e.g. the retina ⁴³) or for whole intact organisms of a predominantly single tissue type that can be studied *in vivo*. An example of the latter case, which gives beautifully resolved ³¹P NMR spectra, is the liver fluke *Fasciola hepatica*. ^{44,47}

Tissues can often be maintained in good condition using superfusion techniques in which oxygenated medium (e.g. Krebs-Henseleit buffer⁴⁸) is circulated around the tissues (rather than through the vascular system in a true perfusion experiment). This works well for naturally thin tissues or for

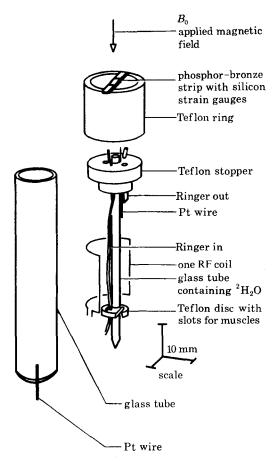


FIG. 3. Design of experimental chamber for isolated-skeletal-muscle studies. The volume in which the NMR measurement is made is roughly defined by the two single-turn radio-frequency (RF) coils, only one of which is shown in the diagram. From ref. 36.

tissue slices. The latter have been widely used in the study of brain metabolism, for which there is no suitable perfusion model. Slices are typically cut to a thickness of 0.3 mm to give the best compromise between adequate oxygenation and minimal tissue damage.⁴⁹ Slices remain metabolically active for many hours (typically >10) and are capable of electrophysiological response. Suitable superfusion apparatus for NMR study is illustrated in Fig. 1.^{22,23} A similar superfusion arrangement, which recirculates air-saturated medium at rates of about 2.5–3 ml min⁻¹ has also been described⁵⁰ and used for studies of higher plant tissues.⁵¹

2. Perfusion techniques for the heart

Perfusion techniques enable a wider range of organs to be studied. A useful source of reference is the book by Ross. ⁵² Many of the classic methods described therein can be used for NMR studies with little modification other than an extension of the "umbilical" lines, which is necessary to keep the ferromagnetic perfusion hardware away from the magnet!

The first NMR perfusion experiments were conducted on isolated rat hearts⁵³⁻⁵⁶ at about the same time as the first muscle studies. The heart is now by far the most commonly studied organ. Almost invariably, Langendorff perfusion methods are employed. These involve cannulation of the aorta and retrograde circulation of oxygenated medium. The aortic valve is maintained shut by the perfusion pressure and medium is forced through the coronary arteries. It is vitally important to ensure that the flow rates are sufficiently high. Inadequate perfusion manifests itself in poor phosphocreatine-to-ATP ratios. 57-60 In guinea-pig hearts, for example, this ratio increases from 0.64 at a perfusion rate of 0.6 ml min⁻¹, reaching a plateau value of 1.82 at 3.8 ml min⁻¹.60 We find that a good guide is to perfuse at a rate of 4 ml min⁻¹ (g wet wt)⁻¹.⁵⁷ Equally, excessive perfusion pressure is to be avoided. All workers to date have perfused with Ringer solution rather than with whole blood. The use of whole blood or the addition of albumin or the polysaccharide dextran to the perfusion medium has occasionally been advocated as a means of reducing the imbalance in osmotic pressure. Oedema is certainly very noticeable over the timescale of most NMR studies. Problems with frothing during oxygenation have led the majority of researchers to work with the simple medium, however. To achieve stable preparations, great care is necessary to ensure the complete removal of debris by using a suitable filter cascade. Bubbles are also a problem, and it is essential to include a bubble trap. Temperature regulation also requires attention. The normal gas-flow system supplied with highresolution spectrometers is woefully inadequate and quite unable to cope with a flow-through situation. Water-jacketed perfusion lines solve the problem, delivering the perfusate at working temperature. Heating downstream of the bubble trap is to be avoided.

Very often it is desirable to monitor the left-ventricular pressure. This can be conveniently achieved with the aid of a balloon catheter and pressure transducer. ⁵⁴ If pacing is required and conventional wire electrodes are to be used then RF filters will generally (though not always) be needed to avoid interference with the RF channel. ⁵⁷ Alternatively, high-impedence lines can be sewn onto the heart. NMR preparations differ from conventional ones in that it is normal practice to immerse the heart in medium, maintaining the level well above the height of the receiver coil with a suitable suction line.

This greatly reduces the magnetic-field perturbation. (A tissue/medium interface represents less of a magnetic-susceptibility mismatch than a tissue/gas one). Shimming using the ¹H FID from the perfusate is then a relatively straightforward matter, even with a single-coil probe tuned to some other nucleus (e.g. ³¹P). ⁶¹ The ¹H signal is normally so great that the gross RF mismatch does not cause problems. Should it do so, a transmission-line circuit can be used to retune to the new frequency. ⁶² Quantitation is the perennial problem in *in vivo* NMR. It can be addressed with the aid of external standards, preferably sealed within the organ bath. Suitable compounds for ³¹P studies have been advocated. ^{58,59}

To obtain spectra synchronous with the cardiac cycle, it is possible to gate the NMR acquisition from the ECG or from the systolic pressure wave. 63 Such methods allow NMR acquisition to remain in step with irregularly beating hearts. However, variable interpulse intervals can be problematic if spectra are not acquired under fully relaxed conditions. An alternative arrangement is to drive the heart using trigger pulses generated from the host computer of the NMR spectrometer. 57 To achieve low stimulation rates by this method, it is necessary to destroy the main endogenous pacemaker activity by crushing or removing the sino-atrial node.

To look at the response of the preparation to different conditions simply requires a switch over of perfusion media. If necessary, these changes can be automated. Such methods have been used to follow the response to carefully controlled periods of anoxia. ⁶⁴ As discussed, the vast majority of NMR cardiac studies are conducted on Langendorff preparations. Other heart preparations are available, however, and have been used to vary the work load to which the heart is subjected. ^{63,65}

3. Perfusion techniques for other organs

Of the mammalian organs, other than the heart, the liver is perhaps the next simplest to perfuse, ⁶⁶ involving only portal venous and venous cannulation. (It is important to avoid metal cannulae—PTFE is suitable.) A typical arrangement for perfusion of the isolated rat liver is illustrated in Fig. 4. ⁶⁷ Several other preparations have been described. ^{66–71} For the liver, it is necessary to perfuse with blood: Iles et al. ⁶⁷ used expired human erythrocytes resuspended in Krebs—Henseleit buffer containing 3% of bovine serum albumin to give a final packed cell volume of approx. 0.17. Stringent safeguards against perfusion leaks are essential! In wider-bore magnets it is also possible to perfuse the liver in situ.

Kidney perfusions are slightly more difficult to set up. NMR kidney studies were pioneered by the Oxford group under Professor Radda in the

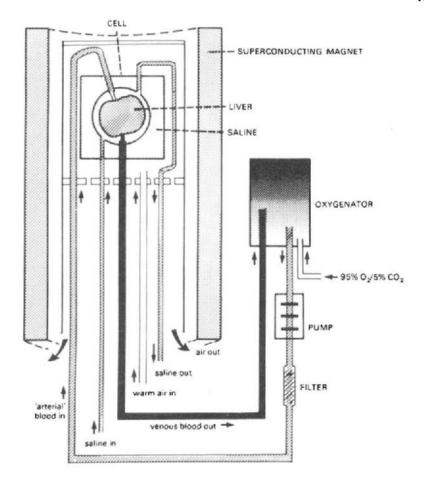


FIG. 4. Circuit for perfusion of the rat liver in the NMR spectrometer. The perfusion medium consisted of Krebs buffer pH7.4 containing erythrocytes (packed cell volume 17%) and albumin (3%). The interior of the probe was maintained at 37 °C, and the oxygenator and filter were contained in a Perspex box maintained at 39 °C. The flow rate was 7-8 ml min⁻¹ (100 g body wt)⁻¹ From ref. 67.

early 1980s.^{72–75} See ref. 76 for a diagram of one of their kidney-perfusion systems. Other kidney studies have since been reported.^{77,78} Cannulation of the ureter enables physiological function to be monitored simultaneously with metabolism.

Mammalian muscle presents something of a problem. Generally it is studied *in situ*. Only one perfusion system suitable for NMR studies has been

described. The Arterial perfusion was used to compare The NMR spectra from cat biceps brachi (>75% fast twitch, glycolytic) and soleus (>92% slow twitch, oxidative). Higher phosphocreatine/ P_i ratios were observed in the biceps, where the free ADP concentration was estimated to be $<1\,\mu\rm M$ compared with $14\,\mu\rm M$ in the soleus. (These estimates are made by determining the concentration of the remaining species participating in the creatine kinase reaction, which is assumed to be at equilibrium.) Intracellular pH measurements (see Section IV) gave a value of 7.0 in both systems. Small muscles (e.g. mouse or immature rat soleus muscles) can be studied by superfusion methods. Smooth muscle, including the uterus, has also been studied by this method.

C. Intact animals

Perfused-organ studies are extremely valuable: they are relatively simple to conduct and give information on the metabolism and function of an organ free from its normal complex regulatory system. Nevertheless, it is important to show that the *in vitro* observations can also be demonstrated *in vivo*. Ideally, the animal should be monitored in as natural a state as possible, with no surgical intervention. Such experiments require NMR localization techniques to select the region of interest. (These are discussed in the subsequent section.) Even in this case, however, restraint and anaesthesia are generally required, and it should be recognized that this in itself can alter metabolic behaviour, particularly in the brain. ⁴⁹ See ref. 82 for an NMR example of the metabolic consequences of exposure to 1% halothane.

Surface coils offer a simple non-invasive means of studying brain metabolism in vivo $^{83-87}$ They are also widely used for skeletal muscles and for liver. $^{88-89}$ However, in the latter case, it is common practice to open the animal's abdomen and place the surface coil directly on the liver (with a nonconducting film interposed) to ensure that all signal originates from it alone. Alternatively, chronically implanted coils can be used. For in vivo heart studies, localization is more of a problem, and both open-chest procedures, with the heart placed in a solenoidal coil, and implanted coils have been described. An interesting elliptical catheter receiver coil has also been reported. It can be passed through peripheral blood vessels and has been used to obtain 31 P spectra of acceptable S/N in <7 min from defined regions within a canine heart.

For clinical studies, even minor surgical intervention is generally unacceptable. Careful attention to proper localization schemes is thus essential.

III. LOCALIZATION METHODS

A. Introduction

As discussed in Section II, studies of isolated organs present no major difficulties, and, with relatively minor modification, it is possible to make use of conventional probeheads. Since samples do not need to be exchanged or spun, and homogeneity requirements are less severe, it is not necessary to adhere to the usual saddle arrangement for receiver coils. At low frequencies, transverse solenoids offer a $\sqrt{3}$ sensitivity advantage, ^{94,95} while at high frequency, cavity or hybrid designs come into their own. Of course, it is possible to record NMR spectra from intact biological systems in the same simple fashion as used for isolated organs. However, such studies are rarely informative, giving metabolic profiles averaged in a meaningless way over the disparate tissues of the organism. Controlled localization is clearly essential. Many suitable methods have been advocated, ranging from the simple localization afforded by the geometry of the receiver coil to fourdimensional chemical-shift-imaging schemes. Before entering into detailed discussion of these different techniques, a list of desirable features is given. Thus, in rough order of priority one might hope for:

- (1) the highest NMR sensitivity per unit time, per unit volume;
- (2) the minimum experiment time;
- (3) accuracy of localization:
 - (i) location,
 - (ii) shape of sensitive volume;
- (4) ease of implementation.

Note that feature (2) may simply be the signal averaging time required to achieve acceptable S/N. In this circumstance it will be dictated by (1). However, this is not necessarily the case, particularly for imaging schemes that require multiple FIDs to be recorded with different combinations of field gradients in order to achieve their spatial discrimination. In this situation one often speaks of a minimum performance time for the localization procedure. Accuracy of localization has two distinct aspects. First, there is the question of where the sensitive volume is located, and secondly, what its shape is. For imaging schemes the relevant parameter is spatial resolution. This at first sight appears to be a simple concept, but the detailed distribution of signal over the pixel and "leakage" into adjacent pixels needs to be taken into account in a proper treatment. The Ease of implementation includes both the hardware requirements and simplicity of use. Other factors that it might be important to take into account include the necessity for the presence of switched field gradients, which give rise to deleterious

eddy-current effects in the bore of a superconducting magnet, and the possibilities for combining the method with other NMR spectroscopic techniques, in order, for example, to measure enzyme kinetics by magnetization transfer (see Section V).

Simple volume-selection techniques were the first to be used for in vivo spectroscopy. Thus surface coils, originally introduced by Morse and Singer in 1970⁹⁸ for flow measurement, were adapted for in vivo use in 1980.⁹⁹ High-resolution³¹P spectra were obtained from skeletal muscle and brain in anaesthetized rats. A roughly contemporary development was the method of topical magnetic resonance, TMR (Greek $\tau o \pi o \sigma = \text{place}$). This is a static field profiling technique essentially similar to Damadian's FONAR (field focusing nuclear magnetic resonance) method of NMR imaging. 101 Many of the other standard NMR imaging methods can be modified to retain chemical-shift information. Thus, as early as 1975, Lauterbur et al. 102 were able to demonstrate a projection-reconstruction-based chemical-shiftimaging system. Many other schemes have been reported including those for sensitive point 103 and echo-planar 104 imaging methods. However, the method lending itself most naturally to chemical-shift studies is Fourier imaging. Maudsley et al. 105 described the appropriate extension of Fourier imaging in 1979. However, the extra dimension was used in their case to record the variable frequency of a single resonance in order to generate a magnetic-field map. Many Fourier-based schemes now exist in both conventional and rotating-frame guises, giving one-, two- or even threedimensional spatial resolution.

The discussion of localization techniques has been divided into two sections, the first dealing with schemes that look at a single volume element (localized spectroscopy) and the second with schemes that give one or more dimensions of localization by applying imaging methods. All available spectroscopic imaging methods as of 1985 have been evaluated and critically reviewed elsewhere. ¹⁰⁶ Only those methods that are widely used or that have particular benefits to commend them are discussed here.

B. Localized spectroscopy

1. Surface coils

There is little mystery surrounding the construction and practical use of a surface coil. In its simplest form it consists of a single loop of copper wire that is placed over the organ of interest. To a first approximation, it will receive signal from a hemispherical region lying immediately beneath it. Unfortunately this apparent simplicity is deceptive and is not borne out by theoretical analysis. In reality, B_1 varies considerably over the hemi-

spherical region (see ref. 11, p.193 for field expressions), falling rapidly with axial distance from the coil centre. Thus as the RF pulse length is increased, the selected volume changes, penetrating more deeply into the sample. ¹⁰⁷ Equally, if the pulse rate is varied, the degree of saturation will alter, and this again will lead to a change in the shape of the excited volume. ^{107–109}

Surface coils are extremely effective when applied in the right context, i.e. to peripheral tissues such as skeletal muscle, liver or brain. Even in such favourable situations, they must be used with caution, however. For example, in vivo ³¹P spectra purporting to originate from human brain ^{110,111} have been shown to contain significant contributions from facial muscle. ^{112,113} It should be noted, however, that paediatric brain studies, which have been so successful in assessing the severity in cases of birth asphyxia, are relatively free from such problems. The main reason is that facial tissue represents only a very small fraction of the volume observed (large surface coils are used). Additionally, some protection can be achieved by setting the flip angle to 180° at the centre of the coil.

Any unwanted contribution from surface muscle in ³¹P liver spectra is immediately apparent because muscle has phosphocreatine present at typically 20 mm whereas it is absent in liver. Often this fact has been used as a tissue marker or "aid to navigation"—there is no phosphocreatine present, so I must be looking at the liver! While such a strategy is acceptable at the development stage, it does not fulfil one's criteria for accuracy of location—it is greatly preferable to be able to state "I am looking at the liver and there is no phosphocreatine."

If used with care, the humble surface coil is extremely effective. Much of the popularity and success it enjoys derives from the excellent sensitivity it affords. This is due in part to the fact that the noise originates only from that volume of tissue which contributes signal. This is in contrast with the situation with larger coils, where noise originates from the entire volume even though the signal may derive from a small region within it.

With proper calibration using phantoms, it is possible to estimate absolute concentrations. 114 The method involves the use of multiply tuned surface coils to compare the X nucleus signal with the 1 H signal from water. T_{1} determinations are possible and pose no particular problems provided that full three-parameter fitting is employed. 115 Saturation 116,117 or even inversion 118 transfer using depth pulses (see below) or DANTE trains (see Section V) of composite pulses can also be accommodated.

For all their simplicity in use, the volume excited by a surface coil is complex in nature and difficult to move about. Deeper penetration can be achieved by increasing the pulsewidth, and Faraday shields can sometimes help, 119 but the situation really calls for greater control. This has often been achieved by combining the use of surface coils with other techniques. Some

of the more potent of these combinations are discussed below. The most successful means of improving the spatial response of the surface coil itself is through the use of "depth pulses". These were introduced by Bendall and Gordon in 1983¹²⁰ and utilize the inhomogeneity of the B_1 field. They select the volume corresponding to a particular B_1 value by averaging out signals from all regions where B_1 differs from this value, using sophisticated phase-cycling schemes, the first of which were based on the EXORCYCLE scheme of Bodenhausen et al. ¹²¹ The simplest depth pulse consists of a θ pulse followed, after a short interval, by a phase-cycled 2θ pulse. When four echoes of the full phase cycle are summed, enhanced signal is obtained from regions where the pulse angle is a multiple of 90°. Outside these regions it is suppressed. In this simple case the dependence on pulse angle is squared relative to that of a single pulse. More sophisticated depth-pulse schemes 112-126 give greater selectivity, for example to \pm 16% of the optimum flip for a 24-pulse sequence and \pm 9% for an 80-pulse variant.

Schemes using composite pulses^{127,128} have been suggested for the improvement of the spatial response of surface coils. In the NOBLE (narrowband for localization of excitation) method of Tycho and Pines¹²⁹ only two acquisitions are required. In one, a composite 180° pulse precedes the normal excitation pulse, giving inversion in a selected region of the sample. This signal can be subtracted from a normal FID (the second acquisition) to leave signal originating predominantly from the selected region. Shaka and Freeman¹³⁰ have suggested similar schemes using composite pulses with phase cycling. A further composite-pulse selective scheme has recently been contributed by Hetherington et al.¹³¹ Bendall and Pegg¹³² have shown that these composite-pulse schemes are formally related to the earlier depth-pulse sequences and in their present form do not offer significant advantages over them.

2. Topical magnetic resonance

Topical magnetic resonance is a method of magnetic field profiling developed specifically for *in vivo* spectroscopy by Oxford Research Systems. ¹⁰⁰ In essence, it achieves localization through the application of high-order field gradients (typically z^2 and z^4) to degrade the homogeneity of the static magnetic field outside a small central homogenous volume. See the review by Gordon *et al.* ¹³³ for a detailed description.

Spectra recorded from a TMR system consist of two components: a well-resolved spectrum from the central "sweet spot" and a broad one from the surrounding inhomogeneous region. The latter can be removed using convolution difference methods, which were originally suggested for NMR

use by Campbell *et al.*; 134 see also the reviews by Lindon and Ferrige 135 and Gordon *et al.* 133 for more sophisticated variants.

The gradients that give the localization are generated by special profiling coils. High current densities are required, and although some adjustment of sensitive volume is possible, systems are normally designed with a particular volume in mind. A further restriction stems from the fact that the location of the sensitive volume is fixed; it is therefore necessary to ensure that the region of interest is moved to coincide with it.

TMR has been useful in the study of deep-seated organs. It can also be used in combination with surface coils but is nowadays losing ground in its popularity to imaging-based methods.

3. Volume-selective excitation

Volume-selective excitation, as the name implies, makes use of selective pulses to achieve localization. Selective pulses were originally proposed by Garroway, Grannell and Mansfield in 1974. The logic behind their development is illustrated in Fig. 5. In (a) a "hard" broadband pulse, as used in conventional high-resolution NMR, excites a wide spectrum, ideally in a uniform manner. The extent of this excitation is inversely related to the pulsewidth. Thus a 1 µs pulse leads to an excitation bandwidth of about 1 MHz. In order to restrict the excitation bandwidth, longer pulses can be used. Thus a 10 ms pulse would give a 100 kHz bandwidth (b). However, the excitation is far from uniform. In fact, it approximates to the Fourier transform of the "top-hat" pulse and is therefore sinc-shaped. The final step in the argument is simply to reverse this situation; i.e. a sinc-shaped RF pulse is applied in the hope of achieving a square excitation profile (c). If this procedure is carried out in the presence of a magnetic field gradient, frequency selection will correspond to spatial selection (see the discussion in ref. 11 for details). Unfortunately, the spin system does not respond in a linear fashion, though it approximates this behaviour for small flip angles. Sinc pulses therefore do not generate perfectly square profiles. Nevertheless, they can be improved by modification ^{137–139} and have been widely applied for plane selection in NMR imaging.

Such pulses can also be used in combination with surface coils, ¹⁴⁰ greatly improving the control over localization that can be achieved. To a first approximation, selective pulses can be thought of as isolating a plane within the hemispherical volume defined by the surface coil. This method, dubbed DRESS (depth-resolved surface-coil spectroscopy) is effective and has been used for human *in vivo* studies of brain and heart. ¹⁴¹ A multiplanar version, known as SLITDRESS, has also been propsed. ¹⁴²

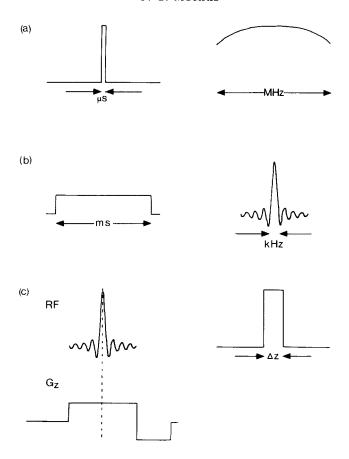


FIG. 5. Selective pulses and their Fourier transforms: (a) hard pulse; (b) soft pulse; (c) sinc pulse.

In order to select a volume element using selective excitation alone, three such pulses need to be applied, corresponding to spatial restriction in each dimension. Post *et al.* ¹⁴³ have reported useful composite selective pulses consisting of a selective 45°, broadband 90°, phase-shifted by 180° relative to the selective pulse, selective 45° sandwich. In the selected slice spins are nutated through 45° by the first selective pulse, switched to -45° by the hard 90° pulse and restored to the z-direction by the final selective pulse. Outside the selected slice, spins are unaffected by the selective pulses, but are nutated into the (x,y)-plane by the broadband pulse. This magnetization rapidly dephases in the applied field gradients. Two such composite pulses, applied consecutively, will result in a strip or line of spins with non-zero

z-magnetization. (If the same selective pulses and gradients are applied in the two dimensions, a "line" of square cross-section will result.) The addition of a third selective pulse restricts the magnetization to a single volume element, which can then be selectively excited using a simple broadband pulse. This is the volume-selective excitation method of Aue. ¹⁴⁴ Pulse schemes that compensate for B_1 inhomogeneity, and which can therefore be used with surface coils, have been developed. ^{145,146} They require a minimum of two FIDs to be acquired. This method works reasonably well. However, since the magnetization outside the selected volume is destroyed, multiple-volume excitation is not possible.

An alternative volume-selective scheme has been developed by Ordidge et al. 147,148 Known as ISIS (image selective in vivo spectroscopy), it utilizes selective 180° pulses. Different combinations of mutually orthogonal selective 180° pulses are applied in succession. The ensuing data set consisting of acquisitions from eight such pulse combinations is summed to give a signal that originates exclusively from the selected volume. This method avoids the need for an accurate hard pulse. If the complex inversion pulses proposed by Silver 149 are employed and the power is sufficiently high, the excitation scheme is not degraded by RF inhomogeneity effects. This makes it easy to set up and apply. Its use has been demonstrated in phantoms and also in the human leg, from which 1H ISIS spectra have been obtained. 148 It has been suggested that, in common with many other difference methods, it may be prone to motional artefact. 106

C. Spectroscopic imaging

Fourier imaging methods^{150,151} when used with gradient amplitude encoding¹⁵² are particularly suited to the retention of chemical-shift information since gradients need only be applied during phase encoding and can be switched off during acquisition. Simple two- and three-dimensional schemes are illustrated in Fig. 6. (See also the discussion in ref. 11, for example.)

Early studies demonstrated the application of the method in one (spatial) dimension, ^{153,154} but two and three-dimensional methods were also soon proposed. ^{155–157} In the latter case, processing entails a four-dimensional Fourier transform, and the time needed to acquire the necessary data sets can become prohibitive (typically several tens of minutes). Thus most studies are one- or two-dimensional.

Haselgrove et al. 154 were the first to demonstrate the in vivo application of a one-dimensional Fourier chemical-shift-imaging technique. They used their method to obtain depth-resolved 31P spectra in rat limbs and in the head of a gerbil whose right carotid artery had been occluded to give

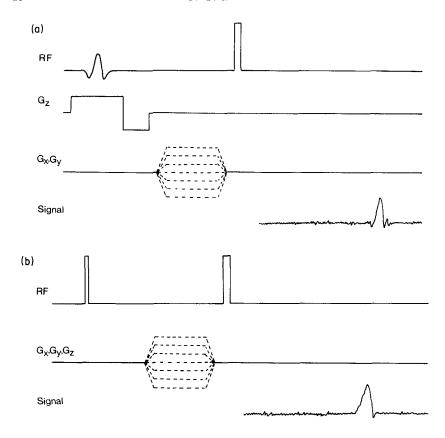


FIG. 6. Three- (a) and four-dimensional (b) chemical-shift imaging schemes, giving spectra over a plane and a volume respectively.

unilateral ischaemia. Loss of phosphocreatine and a concomitant increase in inorganic phosphate were demonstrated in the ischaemic hemisphere, but, owing to the long spin-echo time involved (50 ms), no ATP was observed.

Similar methods can be applied in the rotating frame. ¹⁵⁸ Fortuitously, the B_1 field generated by surface coils falls off with axial distance from the coil centre in an approximately linear fashion. This B_1 gradient can thus be used to generate depth-resolved images. ¹⁵⁹ Recently, Fourier-series window methods have been demonstrated that reduce the number of FIDS that need to be acquired in such an experiment. ^{160–162} Their use has been demonstrated *in vivo*. ¹⁶²

In vivo applications of two- and three-dimensional static-field Fourier

methods have not been widely reported. Pykett and Rosen¹⁵⁵ used a two-dimensional Fourier method to obtain ¹H chemical-shift images of a human forearm and a cat head, in which separate resonances from water and lipid were observed. Maudsley *et al.*¹⁵⁶ have reported similar ¹H studies of cat heads, identifying resonances from water, –CH₂– and CH₃ groups.

Until recently, little success has been achieved with ³¹P chemical-shift imaging. In the last year, however, excellent *in vivo* results have been obtained from human brain, ¹⁶³ and it is certain that there will be very considerable and rapid growth in this area over the next few years.

IV. MEASUREMENT OF INTRACELLULAR CATIONS

A. Introduction

The determination of the intracellular free concentrations of cations is of great current interest because of their implication in the control of key biological processes. The role of Ca²⁺ in initiating muscular contraction is well known, and numerous examples exist of enzyme systems that are pH-regulated. Substantial pH deviations (typically of 0.5 units) are observed on fertilization of sea urchin eggs¹⁶⁴ and during the emergence from dormancy of several other cryptobiotic systems. ¹⁶⁵ Calcium and pH signals are the first events to be observed following mitogenic stimulation. ¹⁶⁶ It is assumed that they are reponsible in a way as yet undetermined for the cell leaving the quiescent phase and entering the cell cycle.

Although most attention has been focused on Ca²⁺ and pH, Na⁺, K⁺ and Mg²⁺ levels have also been the subjects of recent studies.

Various non-NMR techniques have been applied to the measurement of intracellular cations. These methods include flame-emission photometry, atomic absorption spectrometry, ion-sensitive microelectrodes, optical indicators such as photoproteins, dyes and fluorescent probes, radioisotope tracers and, in the case of pH measurement, the distribution of weak acids. Intracellular pH has been the subject of a Ciba Foundation Symposium. ¹⁶⁷ Methods for the measurement of other cations, including direct NMR observation have been reviewed by Tsien. ¹⁶⁸ An early review on NMR metal-ion measurement is also available. ¹⁶⁹

The principal advantage of NMR over other methods is that it can be applied to intact tissues in a non-destructive manner. It is equally applicable to small cell types into which insertion of microelectrodes is difficult. As always, its main disadvantage is a lack of sensitivity. However, since spectral resolution is not normally critical, large samples can be used to overcome this difficulty. In the case of the fluorinated NMR cation indicators

described below, the cellular concentrations can generally be kept at or under those required for single cell studies using comparable fluorescent indicators.

It is not usually the total amount of a particular cation that is of interest. Rather, it is the free concentration within the cell that is of importance. Thus it is necessary to distinguish the cytosolic pool from the extracellular one. This has been accomplished through the use of membrane-impermeable anionic hyperfine-shift reagents, ^{170,171} notably chelates of the lanthanides dysprosium and thallium. For Na⁺ and K⁺, intra- and extracellular concentrations differ by more than an order of magnitude and accurate quantitation is not always straightforward. In the case of Ca²⁺, the difference is some four orders of magnitude and direct observation of intracellular calcium would not be possible even for 100% enriched ⁴³Ca. Some ⁴³Ca NMR studies have nevertheless been reported. ¹⁷² A much better approach is indirect NMR observation using fluorinated indicators. These have now been reported for Ca²⁺, ^{173,174} Mg²⁺, ¹⁷⁵ Na^{+ 176} and pH. ¹⁷⁴

B. Calcium and zinc indicators

A new family of fluorescence indicators of intracellular calcium was proposed and developed by Tsien in the early 1980s. ^{177,178} They are tetracarboxylic acid chelators obtained by addition of fluorescence reporter groups to the basic EGTA structure, which is well-known to bind Ca²⁺ with high specificity. NMR indicators have been derived from the prototype indicator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) by symmetric fluorination: ¹⁷³

The indicator with the most suitable properties is 5FBAPTA. On binding Ca^{2+} , the ¹⁹F resonance shifts some 4.4 ppm downfield. Under normal operating conditions the system is in slow exchange ^{179,180} and so, in the presence of non-saturating Ca^{2+} , two ¹⁹F NMR resonances are observed (Fig. 7). The apparent dissociation constant of Ca-5FBAPTA is 708 nm, so the free calcium concentration is given by $[Ca^{2+}] = 708 A_B/A_F$ nm,

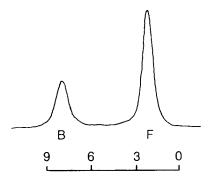
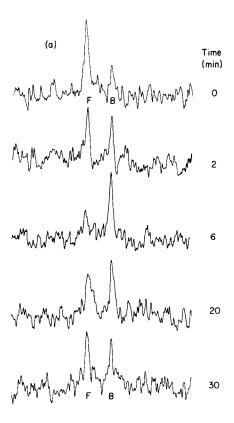



FIG. 7. ¹⁹F NMR spectrum of 5FBAPTA with Ca²⁺ in molar ration 3:1, recorded at 37°C and 188.3 MHz. Chemical shifts are given downfield from 6-fluorotryptophan. From ref. 173.

where $A_{\rm B}$ and $A_{\rm F}$ are the areas of the bound and free indicator peaks respectively. The range over which calcium concentrations can be measured is limited by the accuracy with which the relative peak areas can be determined. Thus if S/N is sufficient for quantitation of the less abundant species (whether free or bound) at one tenth the area of the more abundant species, the range is approximately 70 nm-70 μm. This comfortably encompasses normal basal [Ca²⁺], levels whilst permitting substantial transients to be monitored. No control is required; the method is self-calibrating. Note the sensitivity enhancement over direct NMR methods. It is the chelator (typical concentration range 0.01-1 mm) that is observed, rather than the free calcium (typical concentration 100 nm) with which it is in equilibrium. There is no interference from other abundant cations (Na⁺, K⁺, Mg²⁺) over their normal physiological ranges. Minor cations with high affinity for 5FBAPTA (e.g. Zn²⁺, Cu²⁺, Mn²⁺, Fe²⁺) "announce their presence" through their distinct chemical shifts and do not interfere with the calcium measurement. In some cases it has proved possible to measure the concentration of the minor cation, e.g. Zn²⁺ in Ehrlich Ascites Tumour cells.¹⁷⁴

The free indicator is not membrane-soluble. In order to load it into tissue/cells, the four carboxyl groups are masked by acetoxymethyl esterifying groups. ¹⁸¹ These render the indicator temporarily membrane-soluble. On entering the cytoplasm, endogenous esterases hydrolyse the acetyl-ester linkage and formaldehyde is spontaneously released to give the free indicator, which then remains trapped within the cell by virtue of its ionic charge. This procedure is particularly beneficial from the NMR viewpoint because the ester is virtually insoluble in water and gives a very broad resonance, which is not normally detected. Thus there is no background

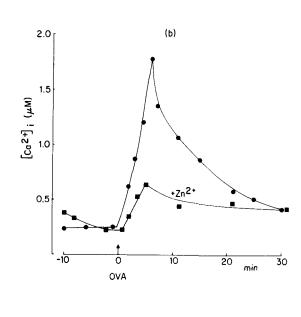


FIG. 8. (a) ¹⁹F NMR spectra for 2H3 cells loaded with 5FBAPTA. Each spectrum corresponds to 2 min data acquisition. Antigen (ovalbumin) was added at 0 min. (b) [Ca²⁺]_i calculated from spectra in (a). The partial block of the Ca signal by 0.1 mm Zn²⁺ is also shown (■). From ref. 174.

signal to be subtracted and the indicator is only NMR-visible when it is in situ and activated.

5FBAPTA has been used to monitor both resting calcium levels and calcium transients with a time resolution approaching 10 s. Figure 8 shows the response to addition of ovalbumin to 2H3 rat basophil leukaemic cells sensitized with a monoclonal IgE antibody to ovalbumin. An initial rapid rise in $[Ca^{2+}]_i$ is seen, followed by a slower decline (10–20 min). The time course correlates well with the release of histamine from intracellular granules by exocytosis. A partial block of the calcium signal occurs in the presence of $0.1 \, \text{mm} \, \text{Zn}^{2+}$.

5FBAPTA can also be used in the study of intact tissues. The tetraester, dissolved in DMSO, can be infused into the perfusion line, preferably downstream of the aeration system to avoid precipitation. Resting calcium levels have been measured in Langendorff-perfused hearts.¹⁷⁴ It is also possible to follow the cardiac calcium transient.¹⁷⁵ To obtain the data shown in Fig. 9, sixteen FIDs were consecutively acquired with low-angle RF pulses immediately following a cardiac pacing pulse. Parallel accumulation yielded spectra corresponding to sixteen phases of the cardiac cycle. Although the basal [Ca²⁺]_i is substantially higher than expected, for reasons not yet fully understood, the calcium transient is clearly evident.

It is certainly possible to improve on 5FBAPTA as an NMR calcium indicator. For example, replacement of the single fluorine atoms with

CARDIAC CALCIUM TRANSIENT

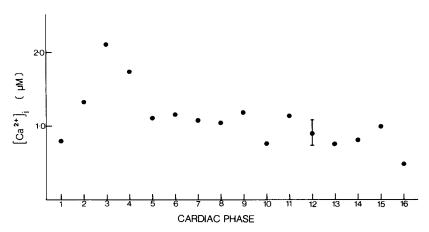


FIG. 9. Cardiac calcium transient measured in a Langendorff-perfused ferret heart using 5FBAPTA. The cardiac cycle of 0.8 s has been divided into 16 phases, each of 50 ms duration.

trifluoromethyl groups would give an immediate threefold improvement in sensitivity. However, care has to be taken in the molecular design to ensure that an adequate chemical shift is preserved between bound and free forms and that the calcium dissociation constant is appropriate.

C. Magnesium indicators

²⁵Mg has been used in biological NMR experiments. ¹⁸² However, it is a low-abundance low- γ quadrupolar nucleus and most attempts to measure intracellular magnesium concentrations have involved indirect observation. Endogenous Mg²⁺ chelators have proved especially useful. Thus Mg²⁺ is by far the most abundant cation in living systems and the bulk of ATP is Mg-bound. Binding occurs principally via the β - and γ -phosphates and is reflected in changes in the ³¹P chemical shifts of these groups, an effect first noted by Cohn and Hughes in 1962. ¹⁸³ The most sensitive resonance is that of the β -phosphate. Its shift is normally measured relative to that of the least sensitive α -phosphate in order to determine [Mg²⁺]. ¹⁸⁴ In the fast-exchange limit, which applies, [Mg²⁺]_i is given by

$$[Mg^{2+}]_i = K_D^{MgATP} \left(\frac{1}{\phi} - 1\right),\,$$

where

$$\phi = \frac{\delta_{\alpha\beta}^{\text{cell}} - \delta_{\alpha\beta}^{\text{MgATP}}}{\delta_{\alpha\beta}^{\text{ATP}} - \delta_{\alpha\beta}^{\text{MgATP}}}.$$

The method requires a knowledge of the Mg-ATP dissociation constant, K_D^{MgATP} , under appropriate cellular conditions. This is not straightforward and has led to some confusion in the literature, ¹⁸⁵ with different [Mg²⁺]_i levels being derived from essentially similar data. Gupta *et al.* ^{186,187} have now resolved the discrepancy and report a reliable value for K_D^{MgATP} of $50 \pm 10\,\mu\text{m}$. This value is rather low when compared with typical [Mg²⁺]_i levels of about 0.5 mm. It means that most chemical-shift measurements are made in the asymptotic region of the titration curve, where the opportunity for error is greatest. Nevertheless, with care, the method is useful, and it has been widely applied in for example erythrocytes, ^{184,188} lymphocytes, ¹⁸⁹ skeletal ¹⁹⁰ and cardiac ^{185,187} muscle. Almost universally, a value of about 0.5 ± 0.3 mm is found.

Mg²⁺ is a weak antagonist of Ca²⁺ and has been described as "nature's physiologic calcium blocker".¹⁹¹ Certainly Mg depletion is a well-known cause of hypertension. The relationship between diastolic blood pressure

and [Mg²⁺]_i has been studied in control and hypertensive patients using ³¹P NMR methods. ¹⁹²

Citrate is another metabolite that is known to bind Mg^{2+} . Cohen¹⁹³ noticed that the ¹³C chemical shift of its methylene groups is sensitive to Mg^{2+} binding and used this as a means to determine a value of $[Mg^{2+}]_i$ in perfused rat liver of 0.46 ± 0.5 mm. The determination proceeds along essentially the same lines as the ³¹P ATP method, but in the case of citrate the magnesium dissociation constant fortuitously has the highly appropriate value of 0.38 ± 0.01 mm.

Recently, an ¹⁹F Mg²⁺ indicator has been developed based on fluorocitrate. ¹⁷⁶ Fluorocitrate is a potent inhibitor of aconitase. ¹⁹⁴ However, the inhibition is highly stereospecific and the purified (+) isomer has proved to be a highly effective non-toxic Mg indicator. As with the Ca indicator, 5FBAPTA, it is normally loaded into cells as the acetoxymethyl ester. However, unlike 5FBAPTA, fluorocitrate operates in the fast-exchange limit and the Mg²⁺ concentration is derived from the ¹⁹F chemical shift. Fluorocitrate has been used to determine a value for [Mg²⁺]_i of 0.6 mm in pig lymphocytes ¹⁹⁵ and of 0.87 mm in Langendorff-perfused ferret heart ¹⁷⁵ (see Fig. 10). Gating techniques have been used in order to look for a cardiac

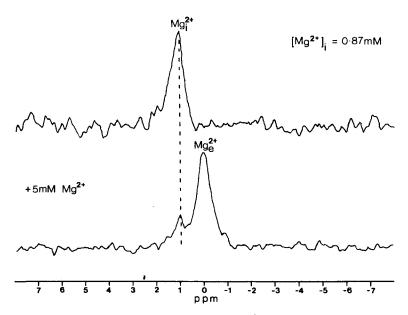


FIG. 10. Measurement of intracellular magnesium $[Mg^{2+}]_i$ in a Langendorff-perfused ferret heart using fluorocitrate (Fcit). In the lower spectrum $5\,\text{mm}\,\text{Mg}^{2+}$ and $0.5\,\text{mm}$ sodium fluorocitrate have been added to allow calibration of the shift measurement.

Mg transient. As expected, none was observed, nor did changes in the extracellular Mg^{2+} concentration in the range 0–10 mm lead to any change in $[Mg^{2+}]_i$, at least in the short term (tens of minutes).

It appears to be a common feature of all systems studied to date that $[Mg^{2+}]_i$ is very tightly regulated at a value somewhere in the range 0.3–1.0 mm.

D. Sodium and potassium measurement

Sodium and potassium can be monitored directly using ²³Na and ³⁹K NMR respectively. Early studies have been reviewed. ¹⁹⁶ Two recent developments have led to an upsurge of interest in ²³Na NMR: ²³Na NMR imaging techniques and the application of membrane-impermeable shift reagents to separate intra-from extracellular sodium signals. ^{170,171}

Several anionic hyperfine shift reagents have been suggested for ^{23}Na studies, including $Dy^{3+}(P_3O_{10}^{5-})_2,^{170}$ $Dy^{3+}(N(CH_2CO_2)_3^{3-})_2$ 171 and $Tm^{3+}TTHA^{6-},^{197}$ which give upfield shifts, and $Dy^{3+}TTHA^{6-}$ is the triethylenetetraminehexaacetate ligand $(O_2CH_2)_2N(CH_2)_2N(CH_2CO_2)_2N(CH_2)_2N(CH_2CO_2)_2N(CH_2)_2N(CH_2CO_2)_2N(CH_2C$

In the presence of the shift reagent, two ²³Na resonances are observed, corresponding to intra- and extracellular Na²³ (see Fig. 11). Under fully relaxed conditions the areas of these two peaks are proportional to the amounts of NMR-visible ²³Na in intra- and extracellular pools. Calibration against a suitable standard and a determination of haematocrit (in the case of cell suspensions) yields the corresponding concentrations. ^{169,198} Note that in addition to the many conventional methods for determining cell volume, including centrifugation, radioisotope dilution etc., a ⁵⁹Co NMR method has been applied to the study of human erythrocytes. ¹⁹⁹ A ³¹P NMR method based on the use of dimethyl methylphosphonate (DMMP) has also been described. ²⁰⁰

Shift reagents have been applied to the study of sodium transport in erythrocytes, ^{170,198,201} normal and leukaemic lymphocytes, ¹⁷⁰ myocytes, ^{202,203} amphibian oocytes ¹⁶⁹ and yeast. ^{171,204} Typically, values of [Na⁺]_i in the range 4–20 mM are obtained. ³⁹K NMR has also been used in conjunction with shift reagents in studies of potassium transport in erythrocytes ²⁰⁵ and yeast. ²⁰⁴ Intra- and extracellular lithium has been discriminated in yeast using ⁷Li NMR. ^{171 23}Na and ³⁹K NMR spectra have been obtained from beating rat hearts in the presence of Dy³⁺TTHA⁶⁻, and responses to ouabain and low external K⁺ have been demonstrated. ²⁰⁶

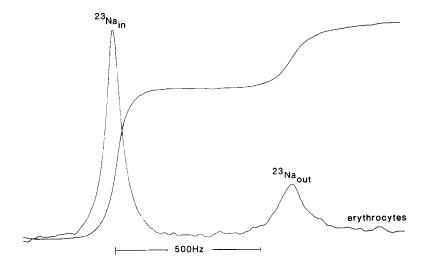


FIG. 11. ²³Na NMR spectrum of well-packed human erythrocytes in a physiological medium containing 4 mm Dy(PPP_i)₂⁷. From ref. 169.

In the latter experiments less than 20% of the expected $[Na^+]_i$ was observed by NMR.

The interest in 23 Na NMR from the point of view of clinical magnetic-resonance imaging arises from the enormous change in sodium level (and hence in image contrast) following Na/K pump failure. For example, in a canine model of myocardial ischaemia, a 300-400% increase in sodium signal was observed. The origin of the sodium signal has been the object of some discussion. It now seems that, in the early reports in which long spinecho times TE > 30 ms were used, the signal was exclusively extracellular. Recent experiments with TE reduced to 3.5 ms have demonstrated a dramatic increase in signal intensity. This is ascribed to intracellular sodium, which has a short T_2 , in the range 0.7-3 ms.

The use of NMR shift reagents has removed the ambiguity in the assignment of intra- and extracellular signals, but the approach is hampered by the sometimes unstable and toxic nature of the agents and the presence of a dominant, albeit shifted, extracellular signal. There is also a further important question regarding the percentage of the intracellular sodium signal that is observed by NMR. For the majority of tissues, with the notable exception of erythrocytes, early workers in the field were only able to observe about 40% of the sodium signal intensity expected on the basis of flame photometry, atomic absorption or NMR measurement following ashing. One possible explanation put forward was that the unobserved

portion was tightly bound and hence invisible. However, since most tissues showed the same fractional loss, irrespective of the protein fraction present, this explanation was considered improbable. The favoured interpretation is now in terms of a very small bound fraction that exhibits a strong quadrupolar interaction and that is in rapid exchange with the free pool. The quadrupolar interaction leads to the loss of 60% of the intensity into unobserved wings corresponding to the $M = -\frac{3}{2}$ to $-\frac{1}{2}$ and $\frac{1}{2}$ to $\frac{3}{2}$ transitions. Recently, however, it has been claimed that, as for the case of erythrocytes, the full intracellular sodium signal intensity is observed in cardiac myocytes. This assertion is based on the agreement of NMR shift-reagent-determined values with those obtained from selective ion-probe or flame-photometric measurements.

The situation regarding the NMR visibility of intracellular sodium remains unclear. Even in the simplest case of erythrocytes, controversy reigns. 198,201

Recently, the development of a Na⁺ chelator has been described ¹⁷⁶ that has appropriate properties for an indicator of $[Na^+]_i$. The molecule, Fcryp-1, is derived from a 2:2:1 cryptand structure and incorporates the same ¹⁹F reporter group as the calcium indicator, 5FBAPTA. It is loaded as the acetoxymethyl ester and operates in the fast-exchange regime. In an experiment to demonstrate the application of this indicator a value of $13.8 \pm 1.8 \,\mathrm{mm}$ was obtained for $[Na^+]_i$ in quiescent pig lymphocytes. With refinement of loading techniques and general availability of the indicator, it is to be hoped that the situation regarding the NMR visibility of tissue sodium will be clarified.

E. Intracellular pH measurement

1. 31P NMR techniques

There are numerous examples of NMR resonances that titrate over the physiological range of pH and that, in principle, could be used to determine intracellular pH (pH_i). The first example to be described in the literature was the use of ^{31}P NMR to monitor the shift of the inorganic phosphate, Pi, resonance in erythrocytes. This method has survived the test of time and remains the most popular. Pi is subject to the following equilibria:

$$H_3PO_4 \leftrightarrow H^+ + H_2PO_4^-$$
 pK 2.0
 $H_2PO_4^- \leftrightarrow H^+ + HPO_4^{2-}$ pK 6.8
 $H_3PO_4 \leftrightarrow H^+ + PO_4^{4-}$ pK 12.0

Thus, under normal physiological conditions, inorganic phosphate exists primarily as $H_2PO_4^2$ and HPO_4^{2-} . These species have ³¹P chemical shifts

relative to phosphocreatine of 3.29 and 5.81 ppm respectively. They are in rapid chemical exchange and so the pH can be determined from the following expression:

pH =
$$6.8 + \log \left(\frac{3.29 - \delta}{\delta - 5.81} \right)$$
,

where δ is the observed ^{31}P shift of the inorganic-phosphate peak. More commonly, an empirically determined titration curve is used to read off pH from the observed shift (see e.g. ref. 210). It is important that this calibration be performed under intracellular conditions: a medium containing $150 \, \text{mm} \, \text{K}^+$, $5 \, \text{mm} \, \text{Na}^+$ and $1 \, \text{mm} \, \text{Mg}^{2+}$ is commonly used. 210 In practice, the titration curve is little shifted, even by substantial changes in these concentrations. 211 However, such effects contribute to an uncertainty in the absolute pH_i of perhaps 0.1 units. pH changes can be measured to rather higher accuracy, normally better than 0.05 units.

There are three potential difficulties with the method:

- (i) it requires a suitable chemical-shift reference;
- (ii) uncertainty concerning cellular location;
- (iii) sensitivity (low concentration in some tissues).

For most animal tissues it has been shown that *Pi*-shift measurements reflect the cytoplasmic pH. Splitting indicative of multiple compartments has rarely been observed. Chemical shifts are measured with respect to the phosphagen phosphocreatine, if it is naturally present. In cases where it is not, e.g. in the liver, it may be necessary to resort to a suitable internal reference introduced into the perfusate. Alternatively ³¹P reference standards may be employed. Suitable compounds have been discussed. ^{211,212} These shift standards can also be used to enable quantitation of the observed signals. Provided the tissue/cell mass can be determined, this procedure yields absolute concentrations of metabolites. Such methods work quite effectively for perfused organ studies, where the tissue mass under study is well defined, but are less satisfactory for surface-coil studies.

One of the most important early findings of ^{31}P NMR studies on intact tissues is the often very low concentration of inorganic phosphate when adequate perfusion is provided. In such circumstances there is some concern that the Pi resonance observed is due to a small percentage of damaged tissue. Equally, there is the possibility that it could reflect a high concentration of Pi in a less abundant cell type within the intact tissue. Such microscopic heterogeneity is difficult to exclude.

The validity of the *Pi* measurement of pH_i is now very widely accepted. Nevertheless, it is important that independent checks be made wherever possible. Phosphomonoesters generally titrate over the physiological pH

range (see e.g. the titration curves on p. 105 of ref. 210) and, if naturally present, can yield useful confirmation of Pi-determined values. In perfusion studies Pi is normally included in the medium. Although its ^{31}P resonance is normally shifted relative to the intracellular one (medium pH 7.4), it may be of sufficient intensity to partially obscure the intracellular signal. In some circumstances perfusion with phosphate-free medium has been shown to be acceptable 57 —in other situations it can lead to washout of tissue Pi (see ref. 210 for details). In their pioneering experiment Moon and Richards were able to confirm their pH measurements by using the two ^{31}P resonances of 2,3-diphosphoglycerate. It has been pointed out, 213 however, that, in fresh blood, the Pi signal is weak and overlaps the 2-P signal of 2,3-diphosphoglycerate. Further, the shifts of the latter depend not only on pH but also on the degree of association with haemoglobin.

It is possible to introduce artificial pH probes. These must, of course, have some pH-dependent NMR property, usually chemical shift, and should not perturb normal cellular metabolism. The phosphate analogue methylphosphonate has been suggested as a suitable alternative exogenous pH probe for erythrocytes. It has a pK of about 7.5, is sensitive $(\Delta pH/\Delta\delta=0.460\,pH\,ppm^{-1})$ and readily enters cells.

Phosphates themselves are not very membrane-permeable. However, sugars are readily taken up by tissues, and their phosphorylated derivatives can be useful if they can be made to accumulate. The best known example is 2-deoxyglucose, which is phosphorylated by hexokinase to give 2-deoxyglucose-6-phosphate. This is not a substrate for glucose-phosphate isomerase, however, and so accumulates. Bailey *et al.* ²¹⁵ have made use of this to confirm the cytoplasmic origin of the cardiac *Pi* resonance.

2. Other NMR pH_i probes

Many ¹H resonances show suitable titration behaviour for use as pH indicators. However, there are few reports of their use *in vivo*. Carnosine and histidine, which are both important as intracellular buffers in some tissues, have been identified as having suitable properties. Carnosine has been used to measure pH_i in intact freshly excised frog muscles. ²¹⁶ Campbell and coworkers have reported²¹⁷ the use of the histidine ¹H resonances of haemoglobin to measure pH_i in erythrocytes.

Comparatively few examples of titratable ¹³C resonances exist. The C2 histidine resonance represents one possibility.

¹⁹F indicators are attractive because of the lack of natural background. Deutsch *et al.*²¹⁸ have advocated the use of difluoromethylalanine. This is not readily transported into cells, requiring incubation times of several hours at 37 °C. Again the trick required to achieve good loading is to supply

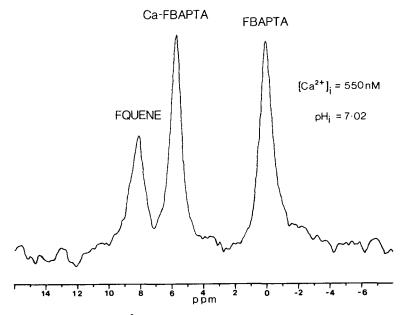


FIG. 12. Simultaneous [Ca²⁺]_i and pH_i measurement in isolated Langendorff-perfused ferret heart.

the indicator in ester form. The free indicator is released by endogenous esterases. By this means, loading to 3 mm was rapidly achieved on incubation with 1 mm ester. The 19 F spectrum (at 188 MHz) is an AB quartet. The separation of the centre lines reflects the degree of protonation of the amino group (pK = 7.2).

The other successful ¹⁹F pH indiator to have been described is Fquene. ¹⁷⁴ This is derived by simple modification of the fluorescence pH indicator quene 1, ²¹⁹ which is itself a development of quin 2. ¹⁶⁸ Fquene has a pK of 6.8. It operates in the fast-exchange limit, so that the pH_i value is determined from the observed chemical shift. It has been used both for cellular studies and for intact tissues, including heart and liver. ²²⁰ If desired, it can be coloaded with other ¹⁹F cation indicators, e.g. 5FBAPTA, to give simultaneous calcium measurement. This procedure also has the advantage of providing an internal chemical-shift reference (see Fig. 12).

F. Applications

1. Proton pumps

The energy derived by living systems from the transfer of electrons to O_2 is used in aerobic systems to generate proton electrochemical gradients. These

gradients are used directly to drive transport and also to produce ATP, the cell's universal energy currency. This proton-gradient coupling between oxidation and phosphorylation is known as the Mitchell hypothesis.²²¹ It is universally accepted and widely supported by experiment. ATP can also be produced anaerobically via glycolysis and used to generate a transmembrane ΔpH in a reversal of the aerobic process. In eukarvotic systems the site of oxidative phosphorylation is the mitochondrion. However, in the simpler prokaryotic systems, such as E. coli, the proton gradient is generated across the plasma membrane (Fig. 13). ³¹P NMR can be used to give a beautiful illustration of the energy-generation procedure, since both the ATP levels and the pH gradient can be observed. 222-228 Figure 14 illustrates the production of proton gradients in a suspension of E. coli. 224 In (a) conditions are anaerobic. There is no glucose in the medium prior to time zero, so there is no energy charge (ATP not visible in the ³¹P NMR spectrum). Hence no pH gradient is generated, and a single Pi resonance corresponding to the pH of the extracellular medium is observed. At time

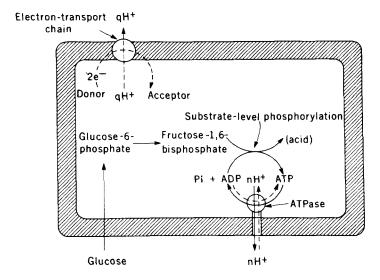


FIG. 13. Schematic view of an $E.\ coli$ cell, demonstrating the linkage between substrate-level phosphorylation, oxidative phosphorylation and the enzyme ATPase. The ATP formed during glycolysis by substrate-level phosphorylation can be hydrolysed by the membrane-bound ATPase to pump protons out and thus form a proton electrochemical gradient. The electrochemical gradient can be formed independently by the electron-transport chain, during which electrons are transferred to an acceptor, usually O_2 . Under these circumstances, the ATPase that is coupled to the electrochemical gradient can synthesize ATP with the energy obtained from transporting protons down the gradient. From ref. 227.

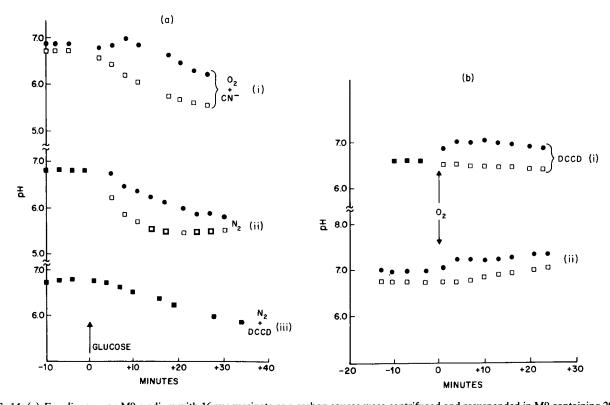


FIG. 14. (a) *E. coli* grown on M9 medium with 16 mm succinate as a carbon source were centrifuged and resuspended in M9 containing 20 mm phosphate and 50 mm Bis-Tris buffer pH 6.8. Glucose was added at time zero to make a concentration of 20 mm (i) 1 mm KCN was added before centrifugation and the rate of O₂ bubbling was 18 ml min. ⁻¹ (iii) 1 mm dicyclohexylcarbodiimide (DCCD) was added before centrifugation. The rate of N₂ bubbling in curves (ii) and (iii) was 6.4 ml min⁻¹. Circles are pH_i and squares pH_e. Experiments were done at 20 °C. (b) Same conditions as in (a) for cells grown in succinate-enriched M9 medium and resuspended in buffer. Oxygen bubbling at 18 ml min⁻¹ was started at time zero.

•, pH_i; □ pH_e. From ref. 222.

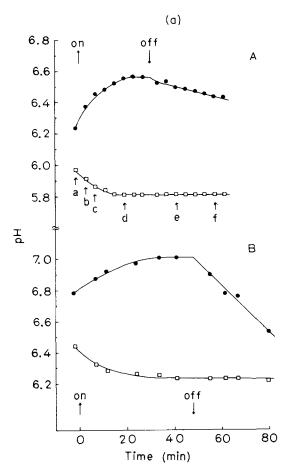
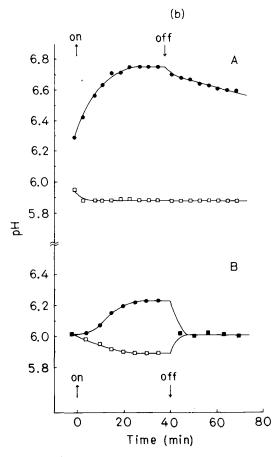



FIG. 15. (a) Light-induced intracellular (\bigcirc) and extracellular (\square) pH in cell suspensions of *Rhodopseudomonas sphaeroides* determined from the ³¹P chemical shift of *Pi* resonances. In the lower trace (B), MgSO₄ was omitted from the medium. (b) The effects of ionophores: (A) 20μ M valinomycin added 15 min prior to illumination; (B) 10μ M *p*-trifluoromethoxyphenylhydrazone added 15 min prior to illumination. From ref. 229.

zero glucose is added and, even under anaerobic conditions, ATP is generated, enabling protons to be expelled and a gradient generated (ii). Essentially similar results are obtained when O₂ is supplied in the presence of cyanide, which blocks the electron-transport chain at the final stage (i). However, if the ATP-ase inhibitor dicyclohexylcarbodiimide (DCCD) is added, the ATP generated by glycolysis cannot be used to establish a proton gradient (iii). Under aerobic conditions (b), with glycolysis suppressed, the

electron-transport chain establishes the proton gradient (ii), and so DCCD has no effect (i).

A second illustration concerns the phototropic bacterium *Rhodopseudomonas sphaeroides*. ²²⁹ When a suspension of these cells is exposed to light, they respond by generating a substantial pH gradient (Fig. 15a). This effect can be accentuated in the presence of $20\,\mu\text{M}$ valinomycin, a K⁺ ionophore (Fig. 15(b)A). Addition of $10\,\mu\text{M}$ of the uncoupler carbonyl-cyanide *p*-trifluoromethoxy phenylhydrazone (FCCP), a proton ionophore, suppresses the gradient (Fig. 15(b)B) in the absence of light.

2. pH homeostasis and compartmentation

It is well known that living systems have the capacity to maintain stable intracellular conditions in the presence of a changing extracellular

environment. ³¹P NMR studies of the inorganic phosphate resonance afford an excellent means for studying pH homeostasis. Thus in suspensions of Ehrlich Ascites Tumour (EAT) cells it has been shown²³⁰ that the intracellular pH is maintained constant at 7.2 in the presence of an extracellular pH varying over the range $6.6 < pH_e < 7.2$. In this study an independent check was performed using 2-deoxyglucose-6-phosphate. This method also enabled accurate measurements to be made in the region where pH_i and pH_e Pi resonances overlapped. In a similar series of experiments, Deutsch et al. ²¹⁸ have used their fluorinated pH probe (see above) to demonstrate pH regulation in human peripheral blood lymphocytes. The intracellular pH was maintained constant over a similar range to that observed for the EAT cells. The same α -difluoromethylalanine probe has been used to demonstrate that [H⁺] does not play a role in mediating the stimulation of urea and glucose production by the hormonal effectors glucagon and adrenenergic agonists in isolated rat hepatocytes. ²³¹

Resonances whose chemical shifts are pH-sensitive also afford the opportunity to distinguish between different intracellular compartments. ²³² The best, and really the only completely unequivocal example occurs in plant cells and tissues where the highly acidic nature of vacuoles enables the vacuolar *Pi* resonance to be clearly identified. Phosphate movements between cytoplasmic and vacuolar compartments can be followed. Thus Fig. 16 shown the distribution of *Pi* in cultured sycamore (*Acer pseudoplatanus*) cells incubated in a medium containing 45 mm *Pi*. The cytoplasmic pool remains roughly constant for the duration of the experiment, and loading occurs into the vacuolar pool, clearly identifiable as the upfield (acidic) *Pi* resonance. ²³³ ²³⁴ Many similar examples exist in systems such as suspension cultures of rye grass (*Lolium multiflorum*), ²³⁵ parsley cells (*Petroclinum hortense*), ²³⁶ *H. lupus* cells, ²³⁷ *Catharanthus roseus* cells, both freely suspended and immobilized, ^{238–240} *Nicotiana tabacum* cells, ²⁴¹ in corn root tips, ²⁴² in the root nodules of soybean, stem segments of sunflower and the pollen grains of tobacco. ²⁴³

From time to time claims have been made concerning the visibility of Pi pools in the mitochondrial matrix. For example, Cohen $et\,al.^{244}$ were able to observe mitochondrial Pi in hepatocytes to which valinomycin had been added to swell the mitochondria and accentuate the ΔpH to give a mitochondrial pH of 7.6. Among the more substantial evidence that exists is the observation of two intracellular Pi signals with corresponding pHs of 7.0 and 7.38 in perfused rat hearts. The most alkaline compartment is ascribed to the mitochondrial matrix. Two intracellular Pi resonances have also been resolved in the slime mould $Dictostelium\,discoideum.^{246,247}$ The more alkaline pool (pH7.7) is suggested to be mitrochondrial. Similarly, two intracellular compartments have been observed in the green alga

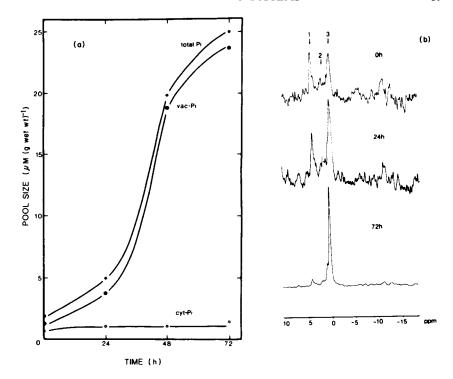


FIG. 16. Time course of Pi diffusion in the cytoplasm and in the vacuole of sycamore cells. Sycamore cells harvested from culture medium were incubated at time zero in flasks containing buffered culture medium at pH 6-6.5, plus 45 mm Pi. At various times total Pi was measured by a phosphomolybdic acid method and vacuolar and cytoplasmic Pi contents were calculated from NMR spectra. (a) Time evolution of total Pi, cytoplasmic Pi and vacuolar Pi. (b) NMR spectra recorded at time 0, 24 and 72 h; each spectrum was recorded after 1800 scans with a repetition time of 1.36 s; peaks 1, 2 and 3 were assigned respectively to glucose-6-P, cytoplasmic Pi and vacuolar Pi. The 72 h spectrum was more attenuated (eightfold) than the 0 and 24 h spectra. From ref. 234.

Chlorella fusca. 248,249 These were assigned to the cytoplasm and the stroma of the chloroplasts. On exposure to light the chloroplastic pH became more alkaline while the cytoplasmic pH became more acidic (see also Section IV.F.1 above).

3. pH measurement in tissues

Clinical magnetic-resonance spectroscopy is a technique of growing importance. The recent contributions to this area of the pioneering Oxford group have been reviewed. ^{250,251} The measurement of pH_i has proved

especially useful and can often be diagnostic. Thus in spectra recorded from human skeletal muscle exercising under ischaemic (anaerobic) conditions, a failure to observe any lactic acidosis concomitant with phosphocreatine breakdown could indicate an enzymatic lesion in the glycolytic chain. The accumulation of a phosphorylated intermediate would give the site of the lesion. Thus in a patient with phosphofructokinase deficiency Chance et al. 252 observed a rapid build-up of its substrate fructose-1-phosphate under ischaemic exercise conditions. (It is also possible to detect patients with partial blocks.) If no accumulation of glycolytic intermediates is observed, the block is presumably at the level of glycogen breakdown. Such a patient with a phosphorylase-a deficiency (McArdle's Syndrome) was the first to be diagnosed by 31P clinical spectroscopy. 254 In this condition, far from lactic acidosis occuring, a mild alkalosis of typically 0.1 pH units to give pH7.2 is observed. Similar behaviour has been noted in the stimulated

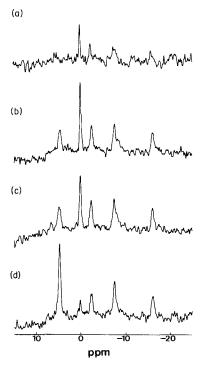


Fig. 17. (a) ^{31}P NMR spectrum of perfused ferret heart obtained from a single scan. Linebroadening 12 Hz. (b)–(d) Blocks of sixty 1 s scans, as control (b) and after 2 min (c) and 10 min (d) exposure to 2 mm NaCN. Sweepwidth 6 kHz, size 4 K, pulse width $20\,\mu s$ (40° pulse), linebroadening 12 Hz. From ref. 57.

skeletal muscles of I strain mice, ²⁵⁵ which are also unable to breakdown muscle glycogen (as a result of phosphorylase kinase deficiency). In perfused ferret hearts, rendered effectively anoxic by treatment with cyanide, a transient alkalosis is often observed prior to the sustained and much more substantial acidosis ^{256,257} (see Fig. 17). Such studies, in which the development of force can be compared with pH_i, enable theories of muscular contraction to be tested. Thus the transient alkalosis alone can account for the observed transient positive inotropy on the basis that the reduced number of protons are less effective at competing for the Ca²⁺ binding sites of troponin. However pH effects are unable to account entirely for the subsequent contractile failure.

³¹P NMR has proved to be extremely useful in assessing the extent of brain damage due to birth asphyxia in neonates. ^{258–263} The PCr/Pi ratio proves diagnostic, decreasing from its normal value of about 1.7 to 0.2–1.0 in cases of severe birth asphyxia. This ratio has been shown to correlate with an increased pH. ²⁶⁴

Recent *in vivo* ³¹P studies of human tumours have demonstrated great diversity in their metabolic behaviour. ²⁶⁵ However, a common feature appears to be an elevation of intracellular pH. This is contrary to one's *a priori* expectation of predominantly glycolytic and hence acidotic tissue. One suggested explanation is an increase in Na⁺/H⁺ exchange activity in the activated cells.

V. ENZYME KINETICS

A. Introduction

Several NMR methods are available for studying enzyme kinetics in vitro. Only magnetization-transfer techniques have been widely applied in vivo, however. For reactions far from equilibrium, i.e. those that are essentially irreversible, it is sometimes possible to obtain unidirectional rate constants by following the rate of conversion of substrate to product directly. Campbell's group have used ¹H spin-echo NMR to study the NAD-dependent conversion of malate to lactate and to estimate the free NAD concentration at $\langle 25\,\mu_{\rm M}$ in intact erythrocytes. Their paper should be consulted for an example of the extreme care that needs to be taken when studying enzyme kinetics in situ.

Under equilibrium conditions, isotope-exchange methods can be used to advantage if the rates are sufficiently slow. For example, in erythrocytes the rate of the lactate dehydrogenase (LDH) reaction can be determined by observing the loss of the lactate methyl-proton signal when D_2O is used as

solvent. ²⁶⁸ This occurs because the pyruvate, which interconverts with lactate in the reaction catalysed by LDH, exchanges a methyl proton with the solvent. This probably takes place via a Schiff's base formed with the α -NH₂ groups of haemoglobin:

Exchange of ¹⁵N label has been used to study the creatine kinase equilibrium and confirm the correctness of the two-site exchange model assumed in most magnetization-transfer studies. A novel ³¹P/¹⁵N double-resonance spin-echo experiment was used to conduct these experiments, in which phase modulation was observed of the ³¹P signal via spin coupling to ¹⁵N. ²⁶⁹

When interconversion occurs at an intermediate rate relative to the difference in chemical shifts of the two interconverting species, lifetime broadening of the NMR resonances is observed. Linewidth measurements then enable rates to be determined. Such methods have been quite widely used *in vitro*. For example, Campbell *et al.*²⁷⁰ have followed the kinetics of proton transfer in the carbonic anhydrase reaction using this technique. However, linewidth measurements are much less useful *in vivo*, where many factors may contribute to line-broadening.

B. Introduction to magnetization-transfer methods

Magnetization-transfer methods involve the use of magnetic rather than isotopic labels. The key realization that the nuclear spin state would be preserved during chemical reaction was made by McConnell in 1958. 271 He used this idea to explain his NMR studies of proton exchange in saturated ammonium nitrate solutions. 272 A full theoretical description of saturation-transfer experiments, in which the magnetization of one of the exchanging species is saturated (reduced to zero) was given by Forsen and Hoffman $^{273-275}$ in the early 1960s. The introduction of Fourier-transform techniques in the 1970s enabled more sophisticated pulse experiments to be conducted. Dahlquist *et al.* 276 suggested the use of a selective 180° pulse, and the method of inversion transfer was born. 277,278 Campbell *et al.* 279 provided theoretical descriptions for these pulsed Fourier-transform experiments, and used a combination of saturation- and inversion-transfer experiments to determine all the rate constants and T_1 s involved in an isomerization reaction of valium.

The first *in vivo* application to be described was a determination of Pi consumption in a suspension of E. coli cells. This rate was shown to be equivalent to the rate of dicyclohexylcarbodiimide-sensitive ATP synthesis.

C. Saturation-transfer methods

Consider two compounds A and B, between which a chemical group, let us say phosphate, is interchanged. The reaction can be written

$$A \leftarrow \xrightarrow{k_f} B$$

where k_f and k_r are the forward and reverse psuedo-first-order rate constants. (Even if the reaction is not first-order, the forward flux would still be given by $k_f[A]$, but k_f would not be a true constant—if the reaction were second-order, for example, it would be proportional to [A].) Under equilibrium conditions, we should expect in the above example to see separate ³¹P NMR signals from the phosphate groups in A and in B. If, immediately prior to the observation pulse, one of these resonances, let us say B, is saturated then its signal will be destroyed and only resonance A will be observed. If the length of the saturating pulse is increased so that it is applied for a time τ prior to the observation pulse (see Fig. 18) then any

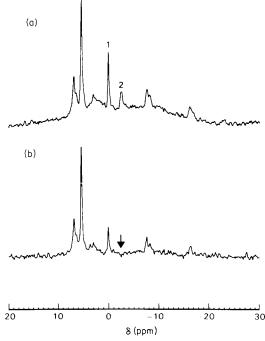


FIG. 18. Determination of the forward rate of creatine phosphotransferase in superfused cerebral tissue. (a), (b) spectra of cerebral tissue superfused in medium containing 10 mm glucose obtained after irradiation of the tissue for 0.005 s (a) or 8 s (b). The frequency of the irradiation is indicated in (b). From ref. 281.

exchange between A and B will result in a loss of intensity for the A resonance. As the period of presaturation is increased there is more time for exchange to occur and resonance A is further diminished. This results in an increasing departure from the Boltzman equilibrium magnetization, which T_1 relaxation processes will tend to restore. In the limit of saturation for an infinite time, the magnetization is determined by the balance between these competing effects. The modified Bloch equations in the presence of exchange are

$$\frac{dM_{\rm A}}{dt} = -k_{\rm f}M_{\rm A} + k_{\rm r}M_{\rm B} + \frac{M_{\rm A}^0 - M_{\rm A}}{T_{\rm 1A}},$$

$$\frac{dM_{\rm B}}{dt} = k_{\rm f} M_{\rm A} - k_{\rm r} M_{\rm B} + \frac{M_{\rm B}^0 - M_{\rm B}}{T_{\rm 1R}} ,$$

where M_A and M_B are the magnetizations of A and B and superscript 0 denotes a Boltzman equilibrium value. When B is saturated so that $M_B = 0$ we have

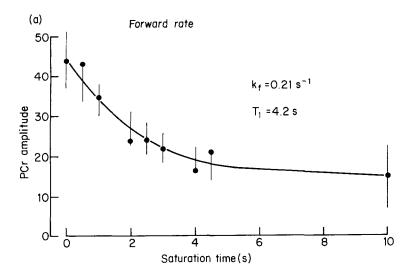
$$\frac{\mathrm{d}M_{\mathrm{A}}}{\mathrm{d}t} = -k_{\mathrm{f}}M_{\mathrm{A}} + \frac{M_{\mathrm{A}}^{0} - M_{\mathrm{A}}}{T_{\mathrm{1A}}},$$

which can be integrated to give

$$M_{\rm A}(t) = \frac{M_{\rm A}^0}{1 + k_{\rm f} T_{\rm 1A}} \left\{ 1 + k_{\rm f} T_{\rm 1A} \exp\left[-\left(k_{\rm f} + \frac{1}{T_{\rm 1A}}\right)t\right] \right\}$$
(1)

when appropriate boundary conditions are applied. The steady-state magnetization M_A^s is given by

$$M_{\rm A}^{\rm s} = M_{\rm A}(\infty) = \frac{M_{\rm A}^0}{1 + k_{\rm f} T_{\rm 1A}},$$
 (2)


and is approached at a rate

$$R_{\rm A} = k_{\rm f} + 1/T_{\rm 1A}.\tag{3}$$

As discussed above, M_A^s is determined by the balance between exchange and relaxation processes. Thus as t tends to ∞

$$\frac{dM_A}{dt} = -k_f M_A + \frac{M_A^0 - M_A}{T_{1A}} = 0,$$
(exchange) (relaxation)

from which the above expression for M_A^s , is quickly recovered. Note that T_{1A} refers to the natural T_1 for compound A, i.e. in the absence of any chemical

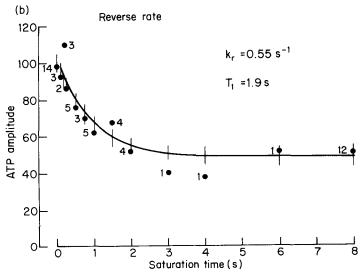


FIG. 19 (a) Determination of the forward rate of creatine phosphotransferase in superfused cerebral tissue. Amplitude of the phosphocreatine resonance plotted as a function of the duration of the γ ATP saturation pulse; duration times were randomly scrambled throughout the experiment. Individual data points are plotted and the bars represent the 95% confidence limits of the fitted exponential function. (b) Determination of the reverse rate of creatine phosphotransferase in superfused cerebral tissue. Amplitude of the γ ATP resonance plotted as a function of the duration of the phosphocreatine saturation pulse; duration times were randomly scrambled throughout the experiment. The points are the means of the numbers of individual normalized values shown. From ref. 281.

exchange. If a full time course is performed (time-dependent saturation transfer) then both M_A^s and R_A can be determined by curve-fitting. It is then a simple matter to extract k_f and T_{1A} from (2) and (3). By irradiating resonance A rather than B, k_r and T_{1B} are obtained in exactly analogous fashion. A time course is illustrated in Fig. 19 for the case of a superfused brain-slice preparation. Details of computer simulation methods for saturation and inversion transfer experiments have been given with particular reference to the creatine kinase reaction.

If T_{1A} is known, or is determined in a separate experiment, then endpoint measurements (i.e. a measurement with no saturating pulse and another with the pulse continuously applied except during acquisition) will yield $k_{\rm f}$ from (2). This is often referred to as steady-state (rather than time-dependent) saturation-transfer NMR. In general the two methods agree well. The steady-state method is much faster, but has to be used with care since it can mask systematic errors or situations where there is multiexponential behaviour.

Saturation transfer gives measurable effects provided that k and $1/T_1$ are of the same order of magnitude. If $k \gg 1/T_1$ then M^s approaches zero (complete transfer of saturation), whereas if $k \ll 1/T_1$ then $M^s \approx M^0$ (relaxation keeps pace with transfer of saturation). Since most biological T_1 s are in the range 0.1–10s, magnetization-transfer methods usefully complement isotope-exchange (too slow) and lineshape measurements (too fast) for the determination of rate constants in this intermediate range.

D. Inversion-transfer experiments

Inversion transfer is similar in principle to saturation transfer, except that one of the resonances is selectively inverted, rather than saturated. This is not trivial: ideally a tailored frequency-selective pulse is applied; ¹³⁹ more usually, high-resolution spectrometers are not equipped with linear RF amplifiers and can only generate "hard" pulses. In this case a suitably chosen train of hard pulses can serve. ²⁸³ Dubbed the DANTE sequence, ²⁸⁴ care must be taken to set the pulse-train parameters correctly (see Fig. 20). Thus the pulse-train duration, T should be appropriate for the required frequency selectivity (no adjacent peaks directly irradiated by the central lobe). The number of pulses n should be chosen so that the first of the excitation sidebands, which occur at frequency intervals of n/T, lies well outside the spectral region of interest. For solution studies good clean selective inversion can be achieved. However, in perfused organs or $in\ vivo$ this is rarely the case, with 90% inversion normally considered good and 75% acceptable. Fortunately these imperfections do not materially affect the analysis.



FIG. 20. DANTE pulse sequence for selective inversion.

The solutions of the modified Bloch equations that govern the inversion-transfer experiment are considerably more complex than those for saturation transfer. This is because the state of the magnetic label, which is introduced, is not held during the time in which exchange occurs but is allowed to evolve. The behaviour of the magnetization of both exchanging species is observed as a function of the time between selective inversion and observation pulses. The curves are each double exponential and contain all four kinetic parameters, viz T_{1A} , T_{1B} , $k_{\rm f}$ and $k_{\rm r}$.

Helpful suggestions regarding computer modelling are given in ref. 282. It is sometimes possible to examine the short-time behaviour of the system, permitting considerable simplification in analysis. The larger excursion from equilibrium makes inversion transfer a potentially more sensitive technique than saturation transfer and has the advantage that all parameters are determined in a single experiment. It is, however, more difficult to implement and to analyse, leading many workers to favour the latter method.

E. Two-dimensional exchange experiments

Two-dimensional NMR experiments have been developed for measuring chemical exchange. ^{286–288} A suitable pulse sequence is illustrated in Fig. 21. Exchange during the mixing period is detected as off-diagonal cross peaks—see Fig. 22 for an example. Balaban and Ferretti²⁸⁹ have discussed the application of 2D methods to enzyme catalysis and have demonstrated their application in vivo, measuring the undirectional rate constant for conversion of phosphocreatine (PCr) to ATP in rat muscle and brain. ²⁹⁰ Similar measurements in perfused rat heart have also been reported. ²⁹¹

2D exchange spectroscopy clearly identifies sites of chemical exchange (via the cross-peaks) and is thus extremely useful where these are uncertain. It is, however, a very time-consuming technique and has not been widely applied.

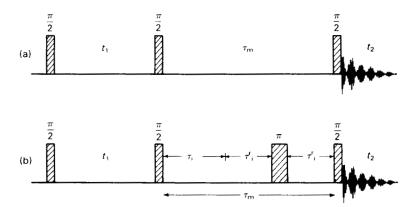


FIG. 21. (a) Basic pulse sequence for 2D exchange spectroscopy and (b) sequence with a π -pulse inserted in the mixing period τ_m . The effective zero-quantum precession interval is restricted to τ_i , since the chemical shifts are refocussed in the remaining intervals $\tau_i^r = \frac{1}{2}(\tau_m - \tau_i)$. From ref. 288.

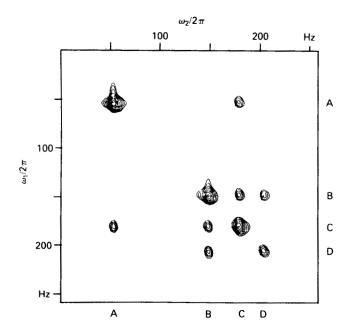


FIG. 22. Two-dimensional exchange spectrum of the protons in heptamethylbenzenonium ion in $9.4\,\mathrm{M}\,\mathrm{H}_2\mathrm{SO}_4$. From ref. 288.

F. Applications and practical difficulties of magnetization-transfer methods

1. Creatine kinase studies

Saturation- and to a lesser extent inversion-transfer experiments have been widely applied to the study of enzyme kinetics in living systems. The vast majority of this effort has been directed towards ³¹P measurements of the creatine kinase equilibrium:

$$PCr^{2-} + MgATP^{-} + H^{+} \leftrightarrow MgATP^{2-} + Cr^{0}$$

for which the exchanging species PCr and ATP are present in relatively high concentrations (typically >5 mm) and for which the relaxation times and exchange rates are of the same order of magnitude and so give measurable magnetization-transfer effects. Most of the remaining studies have been concerned with the unidirectional rate of Pi consumption, which is often equated, rightly or wrongly, with the net rate of ATP synthesis.

One of the earliest detailed studies was performed using anaerobic frog gastrocnemius muscles maintained at $4\,^{\circ}\text{C.}^{292}$ Under resting conditions equal forward and reverse fluxes of $1.6\,\text{mm\,s}^{-1}$ were determined. In contracting muscle, in which there was a net breakdown of PCr of $0.85\,\text{mm\,s}^{-1}$, a corresponding reduction of $0.85\,\text{mm\,s}^{-1}$ was observed in the reverse flux, the forward flux remaining constant.

The situation in the heart appears to be substantially more complex. From the earliest saturation-transfer experiments in this organ. 293-297 discrepencies have been observed between forward and reverse fluxes, the forward flux being anything up to a factor of four greater. Note that the results of Matthews et al. 296 indicate that the apparent imbalance increases with workload, an observation that has been confirmed and expanded in more recent studies. 298,299 A number of reported values are given in Table 1. explanations have been advanced for this compartmentation²⁹⁴ and the participation of ATP in other reactions. The question of compartmentation arises partly as a consequence of the observation of different PCr isozymes, one of which is associated with the myofibrils and a second with the outer face of the inner mitrochondrial membrane. This has led to the "shuttle" hypothesis, 296,300 in which the ATP generated in the mitochondrial matrix is used to generate phosphocreatine, which then transfers its high-energy phosphate to ADP at the myofibrils, enabling contraction to be fuelled. As well as leading to anomalous fluxes, the shuttle effect could also manifest itself in the multiexponential behaviour of time-dependent saturation and inversion-transfer experiments. Some evidence for such behaviour has been presented.²⁹⁸ The alternative explanation of the participation in other reactions is perhaps the more

Animal	Method	Comments	$k_{ m f}$	$k_{\rm r}$	$F_{\rm f}/F_{\rm f}$	Ref.
Rabbit	ST^a		0.52 ± 0.01	0.70 ± 0.1	2.33	294
Rat	ST		0.52 ± 0.02			295
Rat	ST	arrested	0.27 ± 0.04	0.43 ± 0.06	1.0 ± 0.3	296
		70 cm ^c	0.42 ± 0.03	0.38 ± 0.03	1.2 ± 0.06	296
		$140\mathrm{cm}^c$	0.46 ± 0.05	0.23 ± 0.06	1.8 ± 0.5	296
Rat	ST		0.34 ± 0.02	0.39 ± 0.03	1.79 ± 0.1	297
Rat	MST^b		0.30 ± 0.02	0.61 ± 0.04	0.97 ± 0.07	297

TABLE 1

Creatine kinase rate constants and fluxes in perfused hearts.

favoured currently. In measuring the reverse rate $(ATP \rightarrow PCr)$ by saturation transfer, the PCr resonance is saturated and an effect observed on the γ phosphate of ATP. If the latter is exchanging with other species, for example with Pi, under the influence of the many ATPases, then the effect of the transferred saturation will be diluted into the other pools, leading to a smaller apparent transfer of saturation and hence to an underestimate of k_r . Only if $k_r \gg$ rate constants for exchange with other pools, will a correct value be obtained.

Various attempts have been made to assess the rate of ATP consumption. In a stable preparation it is presumably balanced by ATP resynthesis and, if a P:O ratio is assumed (typically 3), can be estimated from oxygen-consumption measurements.²⁹⁵ Additional corrections can be made for glycolytic ATP synthesis.

Similar discrepencies between forward and reverse fluxes have been noted in *in vivo* studies of rat brain.³⁰¹ However, in *in vitro* studies of superfused guinea-pig brain slices these are equal to within experimental error.²⁸¹ It may be that in the latter case it is the much lower APTase activity due to lack of electrical stimulation that leads to a better estimate of k_r .

2. Multiple saturation transfer

Ugurbil^{297,302,303} has recently extended the basic saturation-transfer experiment to enable rates to be determined in the presence of competing reactions. The procedure requires the saturation of the other pools that are in exchange with the species to be monitored. In the case of the creatine kinase equilibrium this means continuous saturation of the *Pi* resonance. Using such a multiple saturation-transfer experiment in the perfused rat

^a Saturation transfer.

^b Multiple saturation transfer.

^c Hydrostatic perfusion pressure.

heart, Ugurbil²⁹⁷ calculated a much higher k_r , leading to a forward to reverse flux ratio approaching unity (see entry in Table 1). It has recently been suggested³⁰⁴ that Pi/γ ATP exchange catalysed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase could also account for the discrepency. A three-site exchange model was used to demonstrate this possibility.

3. Pi yATP exchange

A measurement of the unidirectional rate of consumption of Pi in E.~coli was the first in~vivo saturation-transfer experiment to be reported. Alger et~al. have made similar but more detailed measurements in respiration-competent suspensions of yeast (Saccharomyces cerevisiae), which has both mitochondrial and plasma ATPases. Oligomycin is a potent inhibitor of the former and has been used to demonstrate that some 90% of the total Pi consumption of $3.0 \pm 0.3~\mu \rm M~s^{-1}$ (g wet cells) $^{-1}$ is due to the mitrochondrial F_0 - F_1 ATPase.

The undirectional rate of Pi consumption is often equated with the rate of net ATP synthesis. Evidence for this comes in the perfused heart from P:O ratios calculated on this basis of about 3. See, for example, ref. 295, where a ratio of 3.5 ± 0.8 was determined after correction for glycolytic substrate-level phosphorylation. Such interpretation requires that the F_0 - F_1 ATPase is operating far from equilibrium, so that the reverse flux is negligible. There are also problems regarding which pools of phosphate (mitochrondrial/cytoplasmic) are observed. The experiments are contentious. More recent determinations have yielded P:O ratios close to 6. This may be due to non-negligible reverse flux through microchondrial F_0 - F_1 ATPase. Certainly it has been suggested that in yeast the F_0 - F_1 ATPase must be close to equilibrium because a P:O ratio of 87 was calculated on the assumption of a unidirectional synthetic flux! Alternatively the activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase may be implicated (see above).

REFERENCES

- 1. R. B. Moon and J. H. Richards, J. Biol. Chem., 1973, 248, 7276.
- D. I. Hoult, S. J. W. Busby, D. G. Gadian, G. K. Radda, R. E. Richard and P. J. Seeley, Nature, 1974, 252, 285.
- 3. P. C. Lauterbur, Nature, 1973, 242, 190.
- 4. P. Mansfield and P. K. Grannell, J. Phys., 1973, C6, L422.
- 5. E. R. Andrew, Brit. Med. Bull., 1984, 40, 115.
- 6. L. Kaufman, L. E. Crooks and A. R. Margulls (eds), Nuclear Magnetic Resonance (NMR) in Medicine, Igaku-Shoin, New York and Tokyo, 1981.

- P. Mansfield and P. G. Morris, NMR Imaging in Biomedicine, Academic Press, New York, 1982.
- 8. C. L. Partain, A. E. James, F. D. Rolls and R. R. Price (eds), *Nuclear Magnetic Resonance (NMR) Imaging*, W. B. Saunders, Philadelphia, 1983.
- K. Roth, NMR-Tomography and Spectroscopy in Medicine: Introduction, Springer-Verlag, Berlin, 1984.
- S. W. Young, Nuclear Magnetic Resonance Imaging: Basic Principles, Raven Press, New York, 1984.
- 11. P. G. Morris, NMR Imaging in Medicine and Biology, Oxford University Press, 1986.
- 12. B. D. Ross, D. M. Freeman and L. Chan, Adv. Exp. Med. Biol., 1984, 178, 455.
- 13. G. K. Radda, Adv. Biosci., 1986, 54, 29.
- 14. A. I. Scott, J. Nat. Prod., 1985, 48, 689.
- 15. J. R. Alger and R. G. Shulman, Brit. Med. Bull., 1984, 40, 160.
- J. R. Alger, L. O. Sillerud, K. L. Behar, R. J. Gillies, R. G. Shulman, R. G. Gordon,
 D. Shaw and P. Hanley, Science, 1981, 214, 660.
- 17. P. J. Hore, J. Magn. Reson., 1983, 55, 283.
- D. L. Rothman, K. Behar, H. P. Hetherington and R. G. Shulman, *Proc. Natl. Acad. Sci. USA*, 1984, 81, 6330.
- 19. S. R. Williams, D. G. Gadian, E. Proctor, D. B. Sprague, D. F. Talbot, I. R. Young and F. F. Brown, J. Magn. Reson., 1985, 63, 406.
- S. R. Williams, D. G. Gadian, E. Proctor, D. B. Sprague, D. F. Talbot, F. F. Brown and I. R. Young, Biochem. Soc. Trans., 1985, 13, 839.
- R. S. Balaban, D. G. Gadian, G. K. Radda and G. G. Wong. Anal. Biochem., 1981, 116, 450.
- 22. D. W. G. Cox, P. G. Morris, J. Feeney and H. S. Bachelard, Biochem. J., 1983, 212, 365.
- H. S. Bachelard, D. W. G. Cox, J. Feeney and P. G. Morris, *Biochem. Soc. Trans.*, 1985,
 13. 835.
- 24. R. J. Labotka, J. A. Warth, V. Winecki and A. Omachi, Anal. Biochem., 1985, 147, 75.
- G. Navon, S. Ogawa, R. G. Shulman and T. Yamane, Proc. Natl Acad. Sci. USA, 1977, 74, 888.
- G. S. Karczmar, A. P. Koretsky, M. J. Bissell, M. P. Klein and W. M. Weiner, J. Magn. Reson., 1983, 53, 123.
- 27. J. C. Metcalfe, T. R. Hesketh and G. A. Smith, Cell Calcium, 1985, 6, 183.
- R. Gonzalez-Mendez, D. Wemmer, G. Hahn and N. Wade-Jardetzky, Biochim. Biophys. Acta, 1982, 720, 274.
- 29. P. M. Guillino and R. A. Knazek, Methods Enzymol., 1979, 58, 178.
- K. Ugurbil, D. L. Guernsey, T. R. Brown, P. Glynn, N. Tobkes and I. S. Edelman, Proc. Natl Acad. Sci. USA, 1981, 78, 4843.
- 31. M. H. Melner, S. T. Sawyer, W. T. Evanochko, T. C. Ng, J. D. Glickson and D. Puett, *Biochemistry*, 1983, 2, 2039.
- 32. L. Jacobson and J. S. Cohen, Biosci. Rep., 1981, 1, 141.
- 33. D. L. Foxall and J. S. Cohen, J. Magn. Reson., 1983, 52, 346.
- 34. D. L. Foxall, J. S. Cohen and J. B. Mitchell, Exp. Cell. Res., 1984, 154, 521.
- 35. R. H. Knop, C. W. Chen, J. B. Mitchell, A. Russo, S. McPherson and J. S. Cohen, Biochim. Biophys. Acta, 1984, 804, 275.
- 36. M. J. Dawson, D. G. Gadian and D. R. Wilkie, J. Physiol., 1977, 267, 703.
- 37. M. J. Dawson, D. G. Gadian and D. R. Wilkie, Nature, 1978, 274, 861.
- 38. M. J. Dawson, D. G. Gadian and D. R. Wilkie, Proc. R. Soc. Lond., 1980, B289, 445.
- P. J. Bore, L. Chan, D. G. Gadian, G. K. Radda, B. D. Ross, P. Styles and D. Taylor, in *Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions*, Alan R. Liss, New York, 1982, pp. 527-535.

- G. K. Radda, L. Chan, P. B. Bore, D. G. Gadian, B. D. Ross, P. Styles and D. Taylor, in NMR Imaging: Proceedings of an International Symposium on NMR Imaging (R. L. Witcofski, N. Karstaedt and C. L. Partain, (eds), Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina, 1982, pp. 159-169.
- 41. T. Glonek and S. J. Kopp, Magn. Reson. Imaging, 1985, 9, 359.
- 42. J. V. Greiner, S. J. Kopp and T. Glonek, Surv. Ophthalmol, 1985, 30, 189.
- 43. D. Chapman, C. M. Kemp, P. G. Morris and M. Pons, FEBS Lett, 1982, 143, 293.
- 44. T. E. Mansour, P. G. Morris, J. Feeney and G. C. K. Roberts, *Biochem. Biophys. Acta*, 1982, 721, 336.
- 45. A. G. M. Tielens, K. Nicolay and S. G. Van den Bergh, Mol. Biochem. Parasitol., 1982, 6, 175.
- P. M. Matthews, L. Shen, D. Foxall and T. E. Mansour, Biochem. Biophys. Acta, 1985, 845, 178.
- 47. P. M. Matthews, D. Foxall, L. Shen and T. E. Mansour, Mol. Pharmacol., 1986, 29, 65.
- 48. H. A. Krebs and K. Henseleit, Hoppe-Seyler's Z. Physiol. Chem, 1932, 210, 33.
- 49. H. McIlwain and H. S. Bachelard, Biochemistry and the Central Nervous System, 5th edition, Churchill Livingstone, Edinburgh, 1985.
- 50. R. B. Lee and R. G. Ratcliffe, J. Exp. Bot., 1983, 34, 1213.
- 51. R. B. Lee and R. G. Ratcliffe, J. Exp. Bot., 1983, 34, 1222.
- 52. B. D. Ross, Perfusion Techniques in Biochemistry, Clarendon Press, Oxford, 1972.
- 53. W. E. Jacobus, G. J. Taylor, D. P. Hollis and R. L. Nunnally, Nature, 1977, 265, 756.
- D. P. Hollis, R. L. Nunnally, G. T. Taylor, M. L. Weisfeldt and W. E. Jacobus, J. Magn. Reson., 1978, 29, 319.
- 55. P. B. Garlick, G. K. Radda, P. J. Seeley and B. Chance, Biochem. Biophys. Res. Commun., 1977, 74, 1256.
- 56. P. B. Garlick, G. K. Radda and P. J. Seeley, Biochem. J., 1978, 170, 103.
- 57. P. G. Morris, D. G. Allen and C. H. Orchard, Adv. Myocardiol, 1985, 5, 27.
- 58. J. K. Gard, Diss. Abstr., 1985, B45, 3409.
- 59. J. K. Gard, G. M. Kichura, B. E. Sobel and R. W. Gross, Biophys. J., 1985, 48, 803.
- W. M. Brooks, L. J. Haseler, K. Clarke and R. J. Willis, Mol. Cell. Cardiol., 1986, 18, 149.
- J. J. H. Ackerman, D. G. Gadian, G. K. Radda and G. G. Wong, J. Magn. Reson., 1981, 42, 498.
- 62. R. E. Gordon and W. E. Timms, J. Magn. Reson., 1982, 42, 322.
- 63. E. T. Fossel, H. E. Morgan and J. S. Ingwall, Proc. Natl Acad Sci. USA, 1980, 77, 3654.
- 64. R. L. Barbour, C. H. Sotak, G. C. Levy and S. H. P. Chan, Biochemistry, 1984, 23, 6053.
- 65. D. G. Renlund, E. G. Lakatta, E. D. Mellits, G. Gerstenblith, Circ. Res., 1985, 57, 876.
- R. D. Cohen, R. A. Iles and M. H. Lloyd, in *Isolated Organ Perfusion* (H. D. Ritchie and J. D. Hardcastle, eds), Staples Press, London, 1973, pp. 120–134.
- R. A. Iles, J. R. Griffiths, A. N. Stevens, D. G. Gadian and R. R. Porteous, *Biochem. J.*, 1980, 192, 191.
- 68. S. M. Cohen, J. Biol. Chem., 1983, 258, 14294.
- 69. S. M. Cohen, Fed. Proc. Fed. Am. Soc. Exp. Biol., 1984, 43, 2657.
- K. Albert, G. Knippa, K. P. Zeller, E. Bayer and F. Hartman, Z. Naturforsch., 1984, 39, 859.
- M. A. Pass, Y. Geoffrion, R. Deslauriers, K. W. Butler and I. C. P. Smith, J. Biochem. Biophys. Methods, 1984, 10, 135.
- G. K. Radda, J. J. H. Ackerman, P. Bore, P. Sehr, G. G. Wong, B. D. Ross, Y. Green,
 S. D. Bartlett and M. Lowry, Int. J. Biochem., 1980, 12, 277.
- J. J. H. Ackerman, M. Lowry, G. K. Radda, B. D. Ross and G. G. Wong, J. Physiol., 1981, 319, 65.

- 74. D. Freeman, M. Lowry, G. K. Radda and B. Ross, Biochem. Soc. Trans., 1982, 10, 399.
- D. Freeman, S. Bartlett, G. K. Radda and B. Ross, Biochem. Biophys. Acta, 1983, 762, 325.
- J. J. H. Ackerman, P. J. Bore, D. G. Gadian, T. H. Grove and G. K. Radda, *Phil. Trans. R. Soc. Lond.*, 1980, **B289**, 425.
- 77. A. M. Kumar, A. Spitzer and R. K. Gupta, Kidney Int., 1986, 29, 747.
- 78. B. M. Rayson and R. K. Gupta, J. Biol. Chem., 1985, 260, 7276.
- 79. R. A. Meyer, T. R. Brown and M. J. Kushmerick, Am. J. Physiol., 1985, 248, C279.
- H. L. Kirschenlohr, R. Maxwell, A. N. Stevens, H. W. Hofer, J. R. Griffiths and P. G. Morris, Biol. Chem. Hoppe-Seyler, 1985, 336, 811.
- 81. M. J. Dawson and S. Wray, J. Physiol, 1983, 336, 19.
- T. Yuasa, T. Miyatake, T. Kuwabara, M. Umeda and K. Eguchi, Brain Nerve, 1983, 35, 1089.
- 83. S. Naruse, S. Tanaka, I. Koczcika and H. Watari, Jpn J. Physiol., 1983, 33, 19.
- 84. E. A. Shoubridge, R. W. Briggs and G. K. Radda, FEBS Lett., 1982, 140, 288.
- P. A. Bottomley, K. Kogure, R. Namon and O. F. Alonso, Magn. Reson. Imaging, 1982, 1, 81.
- J. W. Pritchard, J. R. Alger, K. L. Behar, O. A. C. Petroff and R. G. Shulman, Proc. Natl Acad. Sci. USA., 1983, 80, 2748.
- 87. J. W. Prichard and R. G. Shulman, Ann. Rev. Neurosci., 1986, 9, 61.
- 88. P. Y. Shkarin, A. A. Samoitenko and L. A. Sibel'dina, Biofizika, 1983, 28, 122.
- 89. N. V. Reo, B. A. Siegfried and J. J. H. Ackerman, J. Biol. Chem., 1984, 259, 13664.
- M. E. Stromski, F. Anas-Mendoza, J. R. Alger and R. G. Shulman, Magn. Reson. Med., 1986, 3, 24.
- K. J. Neurohr, E. J. Barrett and R. G. Shulman, Proc. Natl Acad. Sci. USA, 1983, 80, 1603
- 92. A. P. Koretsky, S. Wang, M. P. Klein, T. J. James and M. W. Weirer, *Biochemistry*, 1986, 25, 77.
- 93. H. L. Kantor, R. W. Briggs and R. S. Balaban, Circ. Res., 1984, 55, 261.
- 94. D. I. Hoult and R. E. Richards, J. Magn. Reson., 1976, 24, 71.
- 95. E. Oldfield and M. Meadows, J. Magn. Reson., 1978, 32, 327.
- 96. P. Brunner and R. R. Ernst, J. Magn. Reson., 1979, 33, 83.
- 97. A. A. Maudsley, J. Magn. Reson., 1986, 68, 636.
- 98. O. C. Morse and J. R. Singer, Science, 1970, 170, 440.
- J. J. H. Ackerman, T. H. Grove, G. Wong, G. Gadian and G. K. Radda, *Nature*, 1980, 283, 167.
- R. E. Gordon, P. E. Hanley, D. Shaw, D. G. Gadian, P. Styles, P. J. Bore and L. Chan, Nature, 1980, 287, 367.
- 101. R. Damadian, L. Minkoff, M. Goldsmith, M. Stanford and J. Koutcher, *Physiol. Chem. Phys.*, 1976, 8, 61.
- P. C. Lauterbur, D. M. Kramer, W. V. House and C.-H. Chen, J. Am. Chem. Soc., 1975, 97, 6866.
- 103. P. A. Bottomley, J. Magn. Reson., 1982, 50, 335.
- 104. P. Mansfield, J. Phys., 1983, D16, L235.
- 105. A. A. Maudsley, A. Oppelt and A. Ganssen, Siemens Forsch., 1979, 8, 326.
- 106. W. P. Aue, Rev. Magn. Reson. Med., 1986, 1, 21.
- 107. J. V. Evelhoch, M. G. Crowley and J. J. H. Ackerman, J. Magn. Reson, 1986, 56, 110.
- 108. A. Haase, W. Haenicke and J. Frahm, J. Magn. Reson., 1984, 56, 401.
- 109. M. Descorps, M. Laval, S. Comfort and J. J. Chaillout, J. Magn. Reson., 1985, 61, 418.

- 110. P. Bottomley, H. R. Hart, W. A. Edelstein, J. F. Schenck, L. S. Smith, W. M. Leue, O. M. Mueller and R. W. Redington, Radiology, 1984, 150, 441.
- 111. P. Bottomley, H. R. Hart, W. A. Edelstein, J. F. Schenck, L. S. Smith, W. M. Leue, O. M. Mueller and R. W. Redington, *Lancet*, 1983, ii, 273.
- 112. P. S. Tofts, E. B. Cady, D. T. Delpy, A. M. Costello, P. L. Hope, E. O. Reynolds, D. R. Wilkie, S. J. Gould and D. Edwards, *Lancet*, 1984, i, 459.
- 113. J. W. Pettegrew, N. J. Minshew, J. Diehl, T. Smith, S. J. Kopp and T. Glonek, Lancet, 1983, ii, 913.
- 114. K. R. Thulborn and J. J. H. Ackerman, J. Magn. Reson., 1983, 55, 357.
- 115. J. L. Evelhoch and J. J. H. Ackerman, J. Magn. Reson., 1983, 53, 52.
- G. B. Matson, T. Schleich, C. Serdahl, G. Acosta and J. A. Willis, J. Magn. Reson., 1984, 56, 200.
- 117. M. G. Crowley, J. L. Evelhoch and J. J. H. Ackerman, J. Magn. Reson., 1985, 61, 418.
- 118. R. Gonzalez-Mendez, M. E. Moseley, J. Murphy-Boesch, W. M. Chew, L. Litt and T. L. James, J. Magn. Reson., 1985, 65, 526.
- 119. T. C. Ng, W. Evanochko and J. D. Glickson, J. Magn. Reson., 1982, 49, 526.
- 120. M. R. Bendall and R. E. Gordon, J. Magn. Reson., 1983, 53, 365.
- 121. G. Bodenhausen, R. Freeman and D. L. Turner, J. Magn. Reson., 1977, 27, 511.
- 122. M. R. Bendall and W. P. Aue, J. Magn. Reson., 1983, 54, 149.
- 123. M. R. Bendall, Magn. Reson. Med., 1984, 1, 105.
- 124. M. R. Bendall, J. Magn. Reson., 1984, 59, 406.
- 125. M. R. Bendall and D. T. Pegg, Magn. Reson. Med., 1985, 2, 91.
- M. R. Bendall, J. M. McKendry, I. D. Cresshull and R. J. Ordidge, J. Magn. Reson., 1984, 60, 473.
- 127. M. H. Levitt and R. Freeman, J. Magn. Reson., 1981, 43, 65.
- 128. M. H. Levitt and R. Freeman, J. Magn. Reson., 1983, 55, 247.
- 129. R. Tycko and A. Pines, J. Magn. Reson., 1984, 60, 156.
- 130. A. J. Shaka and R. Freeman, J. Magn. Reson., 1984, 59, 169.
- H. P. Hetherington, D. Wishart, S. M. Fitzpatrick, P. Cole and R. G. Shulman, J. Magn. Reson., 1986, 66, 313.
- 132. M. R. Bendall and D. T. Pegg, J. Magn. Reson., 1985, 63, 494.
- 133. R. E. Gordon, P. E. Hanley and D. Shaw, Prog. NMR Spectrosc., 1982, 15, 1.
- I. D. Campbell, C. M. Dobson, R. J. P. Williams and A. V. Xavier, J. Magn. Reson., 1973, 11, 172.
- 135. J. C. Lindon and A. G. Ferrige, Prog. NMR Spectrosc., 1980, 14, 27.
- 136. A. N. Garroway, P. K. Grannell and P. Mansfield, J. Phys., 1974, C7, L457.
- 137. P. R. Locher, Phil. Trans. R. Soc. Lond., 1980, B289, 519.
- 138. J. T. Ngo and P. G. Morris, Biochem. Soc. Trans., 1986, 14, 1271.
- 139. J. T. Ngo and P. G. Morris, Magn. Reson. Med., 1987, 5, 217.
- 140. P. A. Bottomley, T. B. Foster and R. D. Darrow, J. Magn. Reson., 1984, 59, 338.
- 141. P. A. Bottomley, Science, 1985, 229, 769.
- P. A. Bottomley, L. S. Smith, W. M. Leue and C. Charles, J. Magn. Reson., 1985, 64, 347.
- 143. H. Post, Bruker Internal Report.
- 144. W. P. Aue, S. Mueller, T. A. Cross and J. Seelig, J. Magn. Reson., 1984, 56, 350.
- 145. S. Mueller, W. P. Aue and J. Seelig, J. Magn. Reson., 1985, 63, 530.
- 146. S. Mueller, W. P. Aue and J. Seelig, J. Magn. Reson., 1985, 65, 332.
- 147. R. J. Ordidge, in *Proc. 4th Annual Meeting, Society of Magnetic Resonance in Medicine*, 1985, pp. 131–132.

- 148. R. J. Ordidge, A. Connelly and J. A. B. Lohman, J. Magn. Reson., 1986, 66, 283.
- 149. M. S. Silver, R. I. Joseph and D. I. Hoult, J. Magn. Reson., 1984, 59, 349.
- 150. A. Kumar, D. Welti and R. R. Ernst, J. Magn. Reson., 1975, 18, 69.
- 151. A. Kumar, D. Welti and R. R. Ernst, Naturwissenschaften, 1975, 62, 34.
- W. A. Edelstein, J. M. S. Hutchison, G. Johnson and T. Redpath, Phys. Med. Biol., 1980, 25, 751.
- 153. T. R. Brown, B. M. Kincaid and K. Ugurbil, Proc Natl Acad. Sci. USA, 1982, 79, 3523.
- J. C. Haselgrove, V. Subramanian, J. S. Leigh, L. Gyulai and B. Chance, Science, 1983, 220, 1170.
- 155. I. L. Pykett and B. R. Rosen, Radiology, 1983, 149, 197.
- A. A. Maudsley, S. K. Hilal, W. H. Perman and H. E. Simon, J. Magn. Reson., 1983, 51, 147.
- 157. L. D. Hall and S. Sukamar, J. Magn. Reson., 1984, 56, 314.
- 158. D. I. Hoult, J. Magn. Reson., 1979, 33, 183.
- 159. S. Cox and P. Styles, J. Magn. Reson., 1980, 40, 209.
- 160. J. Pekar, J. S. Leigh and B. Chance, J. Magn. Reson., 1985, 64, 115.
- 161. K. R. Metz and R. W. Briggs, J. Magn. Reson., 1985, 64, 172.
- M. Garwood, T. Schleich, B. D. Ross, G. B. Matson and W. D. Winters, J. Magn. Reson. 1985, 65, 239.
- 163. B. D. Ross, personal communication.
- M. W. Winkler, G. B. Matson, J. W. B. Hershey and E. Morton Bradbury, Exp. Cell Res., 1982, 139, 217.
- W. B. Busa, in Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions, Alan R. Liss, New York, 1982, pp. 417–426.
- Calcium, Drugs and Hormones (P. F. Baker and J. C. Metcalfe, eds), Brit. Med. Bull., 1986, 42(4).
- 167. Metabolic Acidosis (R. Porter and G. Lawrenson, eds), Ciba Found. Symp., 1982.
- 168. R. Y. Tsien, Ann. Rev. Biophys. Bioengng, 1983, 12, 91.
- 169. R. K. Gupta and P. Gupta, Ann. Rev. Biophys. Bioengng, 1984, 13, 221.
- 170. R. K. Gupta and P. Gupta, J. Magn. Reson., 1982, 47, 344.
- 171. J. A. Balschi, V. P. Cirillo and C. S. Springer, Biophys. J., 1982, 38, 323.
- 172. E. T. Fossel, in Works in Progress, Society of Magnetic Resonance in Medicine, 1983.
- 173. G. A. Smith, T. R. Hesketh, J. C. Metcalfe, J. Feeney and P. G. Morris, *Proc. Natl Acad. Sci. USA*, 1983, 80, 7178.
- 174. J. C. Metcalfe, T. R. Hesketh and G. A. Smith, Cell Calcium, 1985, 6, 183.
- 175. P. G. Morris, G. A. Smith, J. C. Metcalfe and G. C. Rodrigo, in *Works in Progress*, Society of Magnetic Resonance in Medicine, 1987.
- 176. G. A. Smith, P. G. Morris and T. R. Hesketh, Biochim. Biophys. Acta, 1986, 899, 72.
- 177. R. Y. Tsien, Biochemistry, 1980, 19, 2396.
- 178. R. Y. Tsien, T. Pozzan and T. J. Rink, Nature, 1982, 295, 68.
- 179. J. Sandstrom, Dynamic NMR Spectroscopy, Academic Press, London, 1982.
- J. L. Kaplan and G. Fraenkel, NMR of Chemically Exchanging Systems, Academic Press, New York, 1980.
- 181. R. Y. Tsien, Nature, 1981, 290, 527.
- 182. D. M. Rose, P. A. Tovo, R. G. Bryant, M. L. Bleam, and M. T. Record, in *Biochemical Structure Determination by NMR* (A. A. Bothner-By, J. D. Glickson and B. D. Sykes, eds), Dekker, New York, 1982, pp. 53-64.
- 183. M. Cohn and T. R. Hughes, J. Biol. Chem. 1962, 237, 176.
- 184. R. K. Gupta, J. L. Benovic and Z. B. Rose, J. Biol. Chem., 1978, 253, 6172.
- 185. S. T. Wu, G. M. Pieper, J. M. Salhany and R. S. Eliot, Biochemistry, 1981, 20, 7399.

- R. K. Gupta, P. Gupta, W. D. Yushok and Z. B. Rose, *Biochem. Biophys. Res. Commun.*, 1983, 117, 210.
- R. K. Gupta, P. Gupta, W. D. Yushok and Z. B. Rose, *Physiol. Chem. Phys.*, 1983, 15, 265.
- 188. A. M. Wyrwicz, J. C. Schofield and C. T. Burt, in *Non-Invasive Probes of Tissue Metabolism*, (J. S. Cohen, ed.), Wiley, 1982, pp. 149-171.
- 189. T. J. Rink, R. Y. Tsien and T. Pozzan, J. Cell. Biol., 1982, 95, 189.
- 190. R. K. Gupta and R. D. Moore, J. Biol. Chem., 1980, 255, 3987.
- 191. L. T. Iseri and J. H. French, Am. Heart J., 1984, 108, 188.
- 192. L. M. Resnick, R. K. Gupta and J. H. Laragh, Proc. Natl Acad. Sci. USA, 1984, 81, 6511.
- 193. S. M. Cohen, J. Biol. Chem., 1983, 258, 14294.
- 194. R. Peters, Endeavour, 1954, 13, 147.
- 195. G. A. Smith, A. N. Corps, M. B. Stelmach, P. G. Morris, T. R. Hesketh and J. C. Metcalfe (submitted).
- 196. M. M. Civan and M. Shporer, in *Biological Magnetic Resonance*, Vol. 1 (L. J. Berliner and J. Reuben, eds), Plenum Press, New York, 1978, pp. 1-30.
- S. Chu, M. M. Pike, E. T. Fossel, T. W. Smith, J. A. Balschi and C. S. Springer, J. Magn. Reson., 1984, 56, 33.
- M. M. Pike, E. T. Fossel, T. W. Smith and C. S. Springer, Am. J. Physiol., 1984, 246, c528.
- 199. H. Shinar and N. Gil, FEBS Lett., 1985, 193, 25.
- 200. K. Kirk and P. W. Kuchel, J. Magn. Reson., 1985, 62, 568.
- 201. Y. Boulanger, P. Vinay and M. Desroches, Biophys. J., 1985, 47, 553.
- 202. R. K. Gupta and B. A. Wittenberg, Fed. Proc., 1983, 42, 2065.
- 203. B. A. Wittenberg and R. K. Gupta, J. Biol. Chem., 1985, 260, 2031.
- T. Ogino, J. A. Den Hollander and R. G. Shulman, Proc. Natl Acad. Sci. USA, 1983, 80, 5185.
- 205. P. J. Brophy, M. K. Hayer and F. G. Riddell, *Biochem J.*, 1983, 210, 961.
- M. M. Pike, J. C. Frazer, D. F. Dedrick, J. S. Ingwall, P. D. Allen, C. S. Springer and T. W. Smith, *Biophys. J.*, 1985, 48, 159.
- 207. A. A. Maudsley and S. K. Hilal, Brit. Med. Bull., 1984, 40, 165.
- S. K. Hilal, J. B. Ra, I. K. Mun and A. J. Silver, Soc. Magn. Reson. Med. Abstracts, 1985, pp. 797-798.
- 209. H. J. C. Berendsen and H. T. Edzes, Ann. NY Acad. Sci., 1973, 204, 459.
- 210. R. A. Iles, A. N. Stevens and J. R. Griffiths, Prog. NMR Spectrosc., 1982, 15, 49.
- 211. M. Batley and J. W. Redmond, J. Magn. Reson., 1982, 49, 172.
- 212. J. K. Gard and J. J. H. Ackerman, J. Magn. Reson., 1983, 51, 124.
- 213. R. J. Labotka and R. A. Kleps, Biochemistry, 1983, 22, 6089.
- 214. W. H. Huestis and M. A. Raftery, Biochem. Biophys. Res. Commun., 1972, 49, 428.
- 215. I. A. Bailey, S. R. Williams, G. K. Radda and D. G. Gadian, Biochem. J., 1981, 196, 171.
- 216. Y. Seo, K. Yoshizaki and T. Morimoti, *Jpn J. Physiol.*, 1983, 33, 721.
- F. F. Brown, I. D. Campbell, P. W. Kuchel and D. C. Rabenstein, *FEBS Lett.*, 1977, 82, 12.
- 218. C. Deutsch, J. S. Taylor and D. F. Wilson, Proc. Natl Acad. Sci., USA, 1982, 79, 7944.
- J. Rogers, T. R. Hesketh, G. A. Smith and J. C. Metcalfe, J. Biol. Chem., 1983, 258, 5994.
- 220. J. S. Beech and R. A. Iles, Biochem Soc. Trans., 1987, 15, 871.
- 221. P. Mitchell, Nature, 1961, 191, 144.
- G. Navon, S. Ogawa, R. G. Shulman and T. Yamane, Proc. Natl Acad. Sci. USA, 1977, 74, 888.

- 223. T. R. Brown, K. Ugurbil and R. G. Shulman, Proc. Natl Acad. Sci. USA, 1977, 74, 5551.
- S. Ogawa, R. G. Shulman, P. Glynn, T. Yamane and G. Navon, Biochim. Biophys. Acta, 1978, 502, 45.
- K. Ugurbil, H. Rottenberg, P. Glynn and R. G. Shulman, Proc. Natl Acad. Sci. USA, 1978, 75, 2244.
- K. Ugurbil, T. R. Brown, J. A. den Hollander, P. Glynn and R. G. Shulman, Proc. Natl Acad. Sci. USA, 1978, 75, 3742.
- R. G. Shulman, T. R. Brown, K. Ugurbil, S. Ogawa, S. M. Cohen and J. A. den Hollander, Science, 1979, 205, 160.
- 228. R. G. Shulman, Sci. Am., 1983, 1, 76.
- K. Nicolay, R. Kaptein, K. J. Hellingwerf and W. N. Konings, Eur. J. Biochem., 1981, 116, 191.
- 230. R. J. Gillies, T. Ogini, R. G. Shulman and D. C. Ward, J. Cell Biol., 1982, 95, 24.
- C. J. Deutsch, T. Kashiwagura, J. Taylor, D. F. Wilson and M. Erecuiska, J. Biol. Chem., 1985, 260, 6808.
- 232. P. S. Belton and R. G. Ratcliffe, Prog. NMR Spectrosc., 1985, 17, 241.
- 233. J. B. Martin, R. Bligny, F. Rebeille, R. Douce, J. J. Leguay, Y. Mathieu and J. Guern, Plant Physiol., 1982, 70, 1156.
- F. Rebeille, R. Bligny, J. B. Martin and R. Douce, Arch Biochim. Biophys, 1983, 225, 143.
- 235. A. Schibeci, R. J. Henry, B. A. Stone and R. T. C. Brownlee, Biochem. Int., 1983, 6, 837.
- 236. H. Strasser, K. H. Tietjen, K. Himmelspach and U. Matern, Plant Cell Rep., 1983, 2, 140.
- 237. R. J. Robins and R. G. Ratcliffe, Plant Cell Rep., 1984, 3, 234.
- 238. J. J. Vogel and P. Brodelius, J. Biotechnol, 1984, 1, 3.
- 239. P. Brodelius and H. J. Vogel, J. Biol. Chem., 1985, 260, 3556.
- 240. P. Brodelius and H. J. Vogel, Ann. NY Acad. Sci., 1984, 434, 496.
- 241. V. Wray, O. Schiel, J. Berlin and L. Wite, Arch. Biochem. Biophys., 1985, 236, 731.
- 242. F. H. Andrade, Commun. Biol., 1985, 4, 15.
- 243. F. Mitsumori, T. Yoneyama and O. Ito, Plant. Sci., 1985, 38, 87.
- 244. S. M. Cohen, S. Ogawa, H. Rottenberg, P. Glynn, T. Yamane, T. R. Brown, R. G. Shulman and J. R. Williamson, *Nature*, 1978, 273, 554.
- P. B. Garlick, T. R. Brown, R. H. Sullivan and K. Ugurbil, J. Mol. Cell Cardiol., 1983, 15, 855.
- 246. M. Satre and J. B. Martin, Biochem. Biophys. Res. Commun., 1985, 132, 140.
- 247. J. E. Jentoft and C. D. Town, J. Cell. Biol., 1985, 101, 778.
- 248. F. Mitsumori and O. Ito, FEBS Lett., 1984, 174, 248.
- 249. F. Mitsumori and O. Ito, J. Magn. Reson., 1984, 60, 106.
- 250. G. K. Radda, Biochem. Soc. Trans., 1986, 14, 517.
- 251. G. K. Radda, Science, 1986, 233, 640.
- B. Chance, S. Elaff, W. Bank, J. S. Leigh and R. Warnell, Proc. Natl Acad. Sci. USA, 1982, 79, 7714.
- 253. Z. Argov, W. J. Bank, B. Boden, Y. I. Ro and B. Chance, Arch. Neurol., 1987, 44, 614.
- B. D. Ross, G. K. Radda, D. G. Gadian, G. Rocker, M. Esiri and J. Falconer-Smith, New Engl. J. Med., 1981, 304, 1338.
- A. N. Stevens, G. Lutaya, P. G. Morris, R. A. Iles and J. R. Griffiths Biochem. Soc. Trans., 1983, 11, 92.
- 256. D. G. Allen, P. G. Morris and C. H. Orchard, J. Physiol., 1983, 343, 58P.
- 257. D. G. Allen, P. G. Morris, C. H. Orchard and J. S. Pirolo, J. Physiol., 1985, 361, 185.
- B. Chance, D. Younkin, S. Eleff, R. Warnell and M. Delivonia-Pappadopoulos, *Pediat. Res.*, 1983, 17, 307a.

- 259. E. B. Cady, A. M. De L. Costello, M. J. Dawson, D. J. Delpy, P. L. Hope, E. O. R. Reynolds, P. S. Tofts and D. R. Wilkie, Lancet, 1983, i, 1059.
- 260. P. L. Hope and E. O. Reynolds, Lancet, 1984, ii, 292.
- P. L. Hope, A. M. Costello, E. B. Cady, D. T. Delpy, P. S. Tofts, A. Chu, P. A. Hamilton, E. O. Reynolds and D. R. Wilkie, Lancet, 1984, ii, 366.
- 262. P. L. Hope and E. O. Reynolds, Clin. Perinatol., 1985, 12, 261.
- D. P. Younkin, M. Delivonia-Papadopoulos, J. C. Leonard, V. H. Subramanian,
 S. Eleff, J. S. Leigh and B. Chance, Ann. Neurol., 1984, 16, 581.
- 264. O. A. Petroff and J. W. Prichard, Lancet, 1983, ii, 105.
- R. D. Oberhaensli, D. Hilton-Jones, P. J. Bore, L. J. Hands, R. P. Rampling and G. K. Radda, Lancet, 1986, ii, 8.
- 266. J. R. Alger and R. G. Shulman, Q. Rev. Biophys., 1982, 171, 83.
- R. J. Simpson, K. M. Brindle and I. D. Campbell, Biochim. Biophys. Acta. 1982, 707, 191.
- K. M. Brindle, F. F. Brown, I. D. Campbell, D. L. Foxall and R. J. Simpson, Biochem. Soc. Trans., 1980, 8, 646.
- 269. K. M. Brindle, R. Porteous and G. K. Radda, Biochem. Biophys. Acta, 1984, 786, 18.
- 270. I. D. Campbell, S. Lindskog and A. I. White, J. Mol. Biol., 1974, 90, 469.
- 271. H. M. McConnell, J. Chem. Phys., 1958, 28, 430.
- 272. H. M. McConnell and D. D. Thompson, J. Chem. Phys., 1957, 26, 958.
- 273. S. Forsen and R. A. Hoffman, J. Chem. Phys., 1963, 39, 2892.
- 274. S. Forsen and R. A. Hoffman, J. Chem. Phys., 1964, 40, 1189.
- 275. R. A. Hoffman and S. Forsen, J. Chem. Phys., 1966, 45, 2049.
- 276. F. W. Dahlquist, K. J. Langmuir and R. B. DuVernet, J. Magn. Reson., 1977, 27, 455.
- 277. T. R. Brown and S. Ogawa, Proc. Natl Acad. Sci. USA, 1977, 74, 3627.
- 278. J. R. Alger and J. H. Prestgard, J. Magn. Reson., 177, 27, 127.
- I. D. Campbell, C. M. Dobson, R. G. Ratcliffe and R. J. P. Williams, J. Magn. Reson., 1978, 29, 397.
- 280. T. R. Brown, K. Ugurbil and R. G. Shulman, Proc. Natl Acad. Sci. USA, 1977, 74, 5551.
- 281. P. G. Morris, J. Feeney, D. W. G. Cox and H. S. Bachelard, Biochem. J., 1985, 227, 777.
- 282. R. R. DeFuria, M. K. Dygert and G. M. Alachi, J. Theor. Biol., 1985, 114, 75.
- 283. R. Freeman and H. D. W. Hill, J. Magn. Reson., 1973, 4, 366.
- 284. G. A. Morris and R. Freeman, J. Magn. Reson., 1978, 29, 433.
- 285. H. Degani, M. Laughlin, S. Campbell and R. G. Shulman, Biochemistry, 1985, 24, 5510.
- 286. J. Jeener, B. H. Meier, P. Bachman and R. R. Ernst, J. Chem. Phys., 1979, 71, 4546.
- 287. B. H. Meier and R. R. Ernst, J. Am. Chem. Soc., 1979, 101, 6441.
- 288. R. R. Ernst, G. Bodenhausen and A. Wokaun, *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*, Oxford University Press, 1987.
- 289. R. S. Balaban and J. A. Ferretti, Proc. Natl Acad. Sci. USA, 1983, 80, 1241.
- 290. R. S. Balaban, H. L. Kantor and J. A. Ferretti, J. Biol. Chem., 1983, 258, 12787.
- 291. P. B. Garlick and C. J. Turner, J. Magn. Reson., 1983, 51, 536.
- D. G. Gadian, G. K. Radda, T. R. Brown, E. M. Chance, M. J. Dawson and D. R. Wilkie, *Biochem. J.*, 1981, 194, 215.
- 293. T. R. Brown, D. G. Gadian, P. B. Garlick, G. K. Radda, P. J. Seeley and P. Styles, Front. Biol. Energetics, 1978, 2, 1341.
- 294. R. L. Nunnally and D. P. Hollis, Biochemistry, 1979, 18, 3642.
- P. M. Matthews, J. L. Brand, D. G. Gadian and G. K. Radda, *Biochem. Biophys. Res. Commun.*, 1981, 103, 1052.
- P. M. Matthews, J. L. Brand, D. G. Gadian and G. K. Radda, *Biochim. Biophys. Acta.*, 1982, 721, 312.

- 297. K. Ugurbil, Circulation, 1985, 72, Suppl. 4, 94.
- V. V. Kupriyanov, A. Y. Shteinshneider, E. Ruunge, V. I. Kapel'ko, M. Y. Zueva, V. L. Lakomkin, V. N. Smirnov and V. A. Saks, Biochim. Biophys Acta, 1984, 805, 319.
- 299. J. A. Bittl and J. S. Ingwall, J. Biol. Chem., 1985, 260, 3512.
- V. A. Saks, L. V. Rosenshtraukh, V. N. Smirnov and E. I. Chazov, Can. J. Physiol. Pharmacol., 1978, 56, 591.
- 301. E. A. Shoubridge, R. W. Briggs and G. K. Radda, FEBS Lett., 1982, 140, 288.
- 302. K. Ugurbil, J. Magn. Reson., 1985, 64, 207.
- 303. K. Ugurbil, M. Petain, R. Maiden and S. Michurski, Biochemistry, 1986, 251, 100.
- 304. K. M. Brindle and G. K. Radda, Biochim. Biophys. Acta, 1987, 928, 45.
- 305. J. R. Alger, J. A. den Hollander and R. G. Shulman, Biochemistry, 1982, 21, 2957.
- 306. P. Kingsley-Hickman, E. Y. Sako, P. A. Andreone, J. A. St Cyr, S. Michurski, J. E. Foker, A. H. L. From, M. Petein and K. Ugurbil, FEBS Lett., 1986, 198, 159.

Nuclear Magnetic Resonance Spectroscopy of Boron Compounds Containing Two-, Three- and Four-Coordinate Boron

BERND WRACKMEYER

Laboratorium für Anorganische Chemie der Universität Bayreuth Postfach 10 12 51, D-8580 Bayreuth, FRG

I.	. Introduction	61
II.	. Experimental	63
	A. General procedures, referencing	
	B. Nuclear-spin relaxation	65
III.	. 11B nuclear magnetic resonance	68
	A. Chemical shifts, $\delta^{11}B$	68
	B. Substituent effects on 11 B-chemical shifts, δ^{11} B	. 71
	C. Indirect nuclear spin-spin couplings "J(11BX)	160
IV.	. NMR of nuclei other than ¹¹ B and ¹ H	
	A. ⁶ Li and ⁷ Li NMR	168
	B. 9Be NMR	168
	C. ¹⁰ B, ²⁷ Al and ⁷¹ Ga NMR	168
	D. ¹³ C NMR	. 169
	E. ²⁹ Si, ¹¹⁹ Sn and ²⁰⁷ Pb NMR	. 174
	F. ¹⁴ N and ¹⁵ N NMR	. 175
	G. ³¹ P NMR	. 178
	H. ¹⁷ O and ⁷⁷ Se NMR	
	I. ¹⁹ F, ³⁵ Cl and ³⁷ Cl NMR	
	J. NMR of transition-metal nuclei	
	Acknowledgments	. 181
	References	

I. INTRODUCTION

The influence of boron chemistry on various areas of research in inorganic, organic and theoretical chemistry is well documented.^{1,2} In fact, many models presently employed to describe chemical bonding in general can be traced to attempts to understand bonding in boranes.³ The confirmation of many theoretical predictions in boron chemistry relies on direct and indirect

structural information provided by various physical methods that—fortunately—became available almost at the same rate as that with which the interest in boron compounds was growing. Clearly, there has always been a strong link between the interest in synthesis and the application of physical methods. As in many other areas of chemistry, developments in boron chemistry have been greatly accelerated by NMR. ¹¹B NMR has been at the centre of interest from the beginning, ^{4,5} accompanied by routine ¹H NMR measurements, ⁴ and occasional ¹⁴N, ¹⁹F and ³¹P NMR work. ⁵ In the last 12 years, we have seen an increasing number of ¹³C NMR studies of boron compounds. The availability of "multinuclear" facilities for PFT NMR spectrometers stimulates the measurement of the NMR spectra of other nuclei, like ²⁹Si, ¹¹⁹Sn or other metals, in order to obtain additional information.

¹¹B NMR data have been reviewed several times. ⁴⁻⁹ Reference 10 deals with early ¹³C NMR studies of boron compounds. Reference 7, on the application of "multinuclear" NMR, is closely connected with the synthesis and characterization of organoboron compounds. Recently, boron chemistry has been extended into a number of fascinating new areas (e.g. two-coordinate boron compounds, ¹¹ polyhedral boron halides ¹² and new carbaboranes ¹³ and metallacarbaboranes ¹⁴⁻¹⁶). All of this work, and many other new studies in well-established areas, have been supported by the application of NMR spectroscopy. Therefore the present review is intended to serve several purposes: (i) to update previous reviews on ¹¹B NMR of boron compounds, (ii) to demonstrate some applications of multinuclear NMR to boron chemistry; (iii) to attempt to incorporate new NMR parameters into the known data set; and (iv) to summarize the experimental facts required for obtaining the maximum information from NMR studies on boron compounds.

In order to keep this chapter at a manageable size, extensive discussions and tables of 1H NMR data have been omitted. Similarly, ^{13}C NMR data are not covered in detail. Tables of ^{11}B NMR data have been designed in order to avoid extensive overlap with previous reviews. This means that $\delta^{11}B$ values of derivatives of a well-known class of boron compounds may not be cited, except for a significant deviation from comparable data. Most of the NMR measurements of nuclei other than boron are cited together with $\delta^{11}B$ values in the tables. Since our understanding of the trends in nuclear shieldings or couplings is still poor when heavy nuclei are involved, all data for any new combination of nuclei may provide important information. Solid-state NMR work is not included, although there are a number of promising applications of ^{11}B NMR, for example in borates, 804,805 in boron–sulphur and boron–selenium phases, 789 in boron carbides 807 , also of ^{13}C NMR in boron carbides 806,807 and carbaboranes, 808 to name just a few references.

II. EXPERIMENTAL

A. General procedures, referencing

1. 11B NMR

Since ¹¹B NMR spectra of reaction solutions are readily obtained, they frequently provide the first information about the number of products, their principal structural units as far as the boron is concerned, and about possible dynamical processes. Therefore a few brief remarks on the experimental techniques are in order.

The experimental techniques for obtaining ¹¹B NMR spectra using pulse FT spectroscopy²³ are similar to those for other quadrupolar nuclei that possess a fast quadrupolar relaxation rate (see below). In most cases where the linewidth at half-height $\Delta v_{10} > 50$ Hz a low digital resolution can be used together with short acquisition and pulse-repetition time when 90° pulses are employed. Zero-filling before the Fourier transformation ensures a sufficiently accurate measurement of $\delta^{11}B$ (about ± 0.3 ppm or better). The influence of inert solvents on δ^{11} B values of most boron compounds is small (<±0.3 ppm). However, for some polyhedral boranes, and, in particular, for metallaboranes and metallacarboranes, noticeable solvent shifts (≤4 ppm) have been observed. 703 In the case of tetracoordinate boron there are many examples for a fairly slow quadrupolar relaxation rate, and therefore spin-spin coupling to other nuclei may also be resolved. This requires a more careful setting of the instrument parameters in order to avoid saturation effects and to obtain reproducible values $J(^{11}BX)$. Thus it appears that diverging values, e.g. for ¹J(¹¹B¹H), reported for the same compound result from inadequate experimental parameters rather than from the influence of the solvent, concentration, temperature, etc. The use of a high magnetic-field strength B_0 is advantageous. In addition to the inherent gain in sensitivity (which is not crucial in 11B NMR), resolution of broad overlapping signals can be achieved. Other techniques for increasing the resolution, such as partially relaxed FT NMR, 17 and measuring at high temperatures (in order to slow down the quadrupolar relaxation rate), are not generally applicable. However, the use of nonviscous solvents (like pentane, methylene chloride and ether) and of moderately concentrated solutions is always advisable in order to reduce the linewidth in routine ¹¹B NMR spectra.

For very dilute samples and/or in the case of broad ^{11}B resonances $(\Delta \nu_{1/2} > 500 \text{ Hz})$ background signals arising from the tube and probehead material may hamper a correct interpretation as far as the intensities and the linewidths of the ^{11}B resonances are concerned. This is a general problem found with the broad resonances of quadrupolar nuclei (e.g. ^{14}N ,

 $^{17}\mathrm{O},~^{27}\mathrm{Al},~^{59}\mathrm{Co})$ when considering the various causes for background signals.

2. 13 C NMR

The well-known procedures for ¹³C NMR^{18,23} are applicable for investigating the carbon-containing part of boron compounds. ¹³C resonances of carbon atoms linked directly to the ¹¹B nucleus are in general severely broadened owing to scalar relaxation of the second kind (see below). This effect is rapidly attenuated by intervening atoms. A small broadening with respect to other ¹³C signals may be observed and assigned (provided that the digital resolution is sufficient) to the neighbourhood of the quadrupolar boron nucleus two or three bonds removed. ⁷¹ Since the partially relaxed coupling ⁿJ(¹³C¹¹B) is responsible for this broadening, the magnitude of ⁿJ(¹³C¹¹B) and the quadrupolar relaxation rate of the ¹¹B nucleus are involved. The latter influence is controlled by the experimental conditions. Therefore the amount of broadening depends on the nature of the solvent, upon the temperature and the solute concentration. ⁷¹ Heteronuclear decoupling experiments like ¹³C(¹¹B) confirm the origin of the broadening

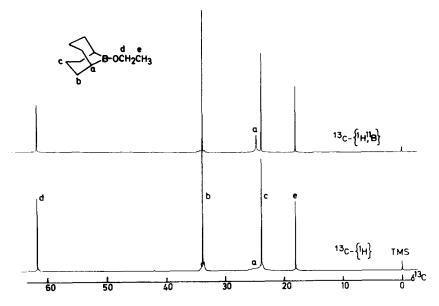


FIG. 1. 50.3 MHz ¹³C NMR spectra of 9-ethoxy-9-borabicyclo[3.3.1]nonane, showing the broad ¹³C(BC) resonance and the influence of ¹¹B decoupling (the same result can be achieved by measuring the ¹³C NMR spectra at low temperature, e.g. -50 °C).

of the ¹³C signals (see Fig. 1) and, in some cases, enable ¹³C resonances to be detected, or they prove the connectivity between ¹³C and a specific boron site (e.g. in carbaboranes). ^{700_702}

3. Other nuclei

NMR measurements of quadrupolar nuclei such as ¹⁴N, ¹⁷O and ²⁷Al are straightforward when following the advice given for the ¹¹B nucleus. Background signals (²⁷Al) or a rolling baseline (¹⁴N, ¹⁷O) may constitute a serious problem.

Spin-½ nuclei with high natural abundance (¹⁹F, ³¹P) are observed by routine procedures. The observation of other spin-½ nuclei with low natural abundance may be extremely difficult owing to the broadening of the resonances and—frequently—to inefficient nuclear-spin relaxation (e.g. ¹⁵N, ²⁹Si). Spin-polarization-transfer techniques based on the INEPT pulse sequence ^{19–21} have greatly improved this situation. Even for ¹⁵N in natural abundance, it has been shown that meaningful spectra of boron–nitrogen compounds can be obtained within a few hours or less. ²²

4. Referencing

Table 1 contains a list of the nuclear properties of the isotopes of the various nuclei frequently encountered in boron compounds. The final column shows the frequencies Ξ that can be used as external references. Since the frequencies of resonance signals can be readily determined using pulse-FT spectrometers, their conversion to the δ scale provides a convenient and reproducable way of referencing. Of course, this does not replace the internal reference (Me₄Si) in the case of ¹H and ¹³C (and possibly ²⁹Si), but it appears to be a reliable method for those nuclei for which an external reference is needed anyhow. This concept is also seen in the case of δ^{103} Rh or δ^{195} Pt, where arbitrary frequencies have been proposed as external references in order to circumvent the influence of temperature and concentration upon the resonance frequency of a distinct compound (e.g. Na₂[PtCl₆] in H₂O/D₂O for δ^{195} Pt).

B. Nuclear-spin relaxation

For the majority of boron compounds the longitudinal relaxation time $T_{1(^{11}B)}$ is of the order of 10^{-3} s and the relaxation mechanism is dominated by the quadrupolar term. ²⁵ Therefore $T_{1(^{11}B)} = T_{2(^{11}B)} = T_{(^{11}B)}^{Q}$ and, assuming that T_1 is frequency-independent in the motional-narrowing

TABLE 1 Nuclear properties and referencing for nuclei frequently encountered in boron compounds.

Nucleus	Natural abundance (%)	Spin I	Magnetogyric ratio (rad s ⁻¹ T ⁻¹)	Relative sensitivity ^b $D^{C}(^{13}C = 1)$	Resonance frequencies at 2.301 T	Electric quadrupole moment Q $(10^{-28} \mathrm{m}^2)$	Reference compound	Ξ (Hz)
¹H	99.98	1/2 3/2	2.676×10^{8}	5.68 × 10 ³	100.00	-	Me₄Si	100 000 000
⁵Li	92.58	3/2	1.0398×10^{8}		38.86	-0.045	LiCl/H ₂ O	
¹⁰ B	18.83	3	2.875×10^{7}		10.53	0.074	F ₃ B—OEt ₂	10743656
¹¹ B	81.17	3 3/2 1/2	8.582×10^{7}		32.08	0.0355	F ₃ B—OEt ₂	32 083 972
13C	1.11	1/2	6.725×10^{7}	1.00	25.14	*****	Me₄Si	25 145 004
¹⁴ N	99.64	1	1.933×10^7		7.22	0.02	CH ₃ NO ₂	
15N	0.36	1/2	-2.711×10^7	2.19×10^{-2}	10.13		(neat) CH ₃ NO ₂ (neat)	10 136 757
17O	0.037	5/2	-3.628×10^{7}		13.57	-0.03	H ₂ O	
19F	100.00	1/2	2.517×10^{8}	4.73×10^{3}	94.08	_	CFCl ₃	94 093 795
²⁷ Al	100.00	5/2	6.9706		26.06	0.149	$[Al(H_2O)_6]^{3+}$	
²⁹ Si	4.7	1/2	-5.314×10^7	2.09	19.87		Me₄Si	19 867 184
³¹ P	100.00	1/2	1.082×10^{8}	3.77×10^{2}	40.48	_	H ₃ PO ₄ (85%)	40 480 790
³³ S	0.76	3/2	2.051×10^{7}		7.67	0.064		
35Cl	75.53	3/2	2.621×10^{7}		9.60	-0.0797	Cl-	
⁵⁹ Co	100.00	⁷ /₂	6.3171		23.61	0.40	$[Co(CN)_6]^{3-}$	
⁷⁷ Se	7.58	1/2	5.109×10^{7}	2.98	19.10	_	Me ₂ Se	19 071 523
¹⁰³ Rh	100.00	1/2	0.842×10^{7}	0.18	3.16		-	3 160 000
¹¹⁹ Sn	8.58	1/2	-9.971×10^{7}	25.2	37.27		Me₄Sn	37 290 662
¹²⁵ Te	6.99	1/2	-8.453×10^7	12.5		_	Me ₂ Te	31 549 802
195Pt	33.8	5/2 1/2 5/2 1/2 5/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	5.7505×10^{7}	19.1	21.4			21 400 000
²⁰⁷ Pb	21.1	1/2	5.59×10^7	11.8	20.9	-	Me₄Pb	20 920 597

^a Data from Ref. 24; Ξ values from Ref. 24 or from own measurements. ^b A direct comparison of the D^{C} values for nuclei with $I = \frac{1}{2}$ assumes same values of T_{1} .

limit, $T_{2(^{11}B)}$ is given by

$$T_2 = (\pi \Delta \nu_{1/2})^{-1}. (1)$$

Since $T_2 = T_Q$, the linewidths $\Delta v_{1/2}$ are given by

$$\Delta \nu_{1/2} = \frac{3\pi}{10} \frac{2I+3}{I^2(2I-1)} \chi^2 (1+\frac{1}{3}\eta^2) \tau_{\rm C}, \tag{2}$$

where χ is the nuclear quadrupole coupling constant, η is the asymmetry parameter ($0 < \eta < 1$) for the electric-field gradient, I is the nuclear spin and τ_C is the rotational correlation time. From (2) it is apparent that the linewidth of ¹⁰B NMR signals is smaller (by a factor of about 0.65) than for ¹¹B signals. However, this is compensated by the greater magnetic moment of the ¹¹B nucleus (γ (¹¹B)/ γ (¹⁰B) \approx 3). Furthermore, it is evident from (2) that the small linewidths of ¹¹B NMR signals are related to a symmetrical charge distribution around the ¹¹B nucleus (χ is small). Apart from an increase in the χ values, greater linewidths are caused by a decrease in τ_C (slower molecular tumbling), which can be attributed to increasing molecular size (or association) or greater viscosity of the solution (e.g. measurement at low temperature).

The important message from the linewidths of ¹¹B NMR signals concerns the direct information on $T_{(^{11}B)}^{Q_{11}}$ since, in most cases, inhomogeneity contributions to $\Delta\nu_{1/2}$ are negligible in comparison with $(T^Q)^{-1}$. The values $T_{(^{11}B)}^Q$ can be used to qualitatively predict the appearance of the NMR spectra of spin-coupled nuclei X, with $I=\frac{1}{2}$, if the order of magnitude of $J(^{11}BX)$ is known. The X resonance exhibits a well resolved 1:1:1:1 quartet if $2\pi|J(^{11}BX)|T_{(^{11}B)}^Q>1$, a partially relaxed quartet for $5>2\pi|J(^{11}BX)|T_{(^{11}B)}^Q>1$ and a single more or less broadened line (linewidth at half-height $\Delta\nu_B$) for $2\pi|J(^{11}BX)|T_{(^{11}B)}^Q<1$. Thus, once the origin of the relative broadening $(\Delta\nu_B)$ of the single X resonance is known, the constant for scalar relaxation of the second kind, $T_{2(X)}^{SC}$, can be evaluated and a range for the $J(^{^{11}BX})$ value can be deduced: ²⁶

$$(T_2^{SC})^{-1} = \frac{1}{2} (T_1^{SC})^{-1} + \frac{4}{3} \pi^2 [J(^{11}BX)]^2 I(I+1) T_{(^{11}B)}^{Q_{11}}.$$
 (3)

Neglecting the contribution from $T_{(X)}^{SC}$, the broadening $\Delta \nu_{\rm B}$ of the X-resonance is related to $J(^{11}{\rm BX})$ and $T_{(^{11}{\rm B})}^{Q_{(^{11}{\rm B})}}$ according to

$$\Delta \nu_{\rm B} = 5\pi [J(^{11}{\rm BX})]^2 T_{(^{11}{\rm B})}^{\rm Q}. \tag{4}$$

Of course, analogous considerations apply to other quadrupolar nuclei that may be present in boron compounds. There are a few examples where spin-spin coupling between ¹¹B and another quadrupolar nucleus (e.g. ²H, ¹⁰B, ¹⁴N) is partly resolved. The appearance of these spectra depends in a predictable manner on the respective quadrupolar relaxation rates.

In the case of nuclei X, with $I = \frac{1}{2}$, the contributions from the various mechanisms contributing to longitudinal relaxation,

$$(T_1)^{-1} = (T_1^{DD})^{-1} + (T_1^{SC})^{-1} + (T_1^{SR})^{-1} + (T_1^{CSA})^{-1},$$
 (5)

(DD = dipole-dipole interactions, SC = scalar interactions, SR = spin-rotation processes, CSA = chemical-shielding anisotropy) are distinguished in the normal way. The evaluation of the significance of the dominant contribution helps to select the optimum spectral parameters for recording the X NMR spectra.

III. 11B NUCLEAR MAGNETIC RESONANCE

A. Chemical shifts, $\delta^{"}$ B

1. General

The nuclear screening constant σ is expressed as the sum of diamagnetic (σ_d) and paramagnetic (σ_n) components:

$$\sigma = \sigma_{\rm d} + \sigma_{\rm p}. \tag{6}$$

Using Ramsey's terminology, ⁸⁸ σ_d and σ_p are molecular terms that are large and of opposite sign. A quantitative theoretical treatment of σ is difficult, as can be seen by considering the sometimes crude approximations that are involved in the description of the molecular excited states and the dependence of σ upon the choice of origin. People's MO treatment ⁸⁹ of σ simplifies some of these problems by assuming the dominance of local terms σ_d^{loc} and σ_p^{loc} , and this approach can be further simplified by using an average excitation energy (AEE = ΔE) instead of summing over all excited states. Although this semiempirical approach has several shortcomings (for example, in the description of the influence on σ exerted by heavy nuclei) it adds to the qualitative understanding of physical effects underlying the phenomenon of nuclear shielding. We have

$$\sigma_{p(A)}^{loc} = -\frac{\mu_0 \mu_B^2}{2\pi} (\Delta E)^{-1} < r^{-3} >_{2p} \sum_B Q_{AB},$$
 (7)

where μ_0 is the permeability of free space, μ_B is the Bohr magneton, r is the distance of the 2p electron from nucleus A, $\Sigma_B Q_{AB}$ are bond-order chargedensity terms and the summation over all atoms B includes A.

In contrast with σ_d , in the general approach of Ramsey the local term σ_d^{loc} may be regarded as fairly constant and changes in the nuclear shielding are

mainly assigned to changes in the term $\sigma_p^{\rm loc}$. The term ΔE in (7) results from the fact that the external field B_0 mixes excited states with the ground state. The distance term reflects individual nuclear properties and may undergo changes induced by strongly electronegative or electropositive substituents. The latter influence is also reflected by the sum $\Sigma_B \, Q_{AB}$. It is also evident that the influence of electronegative or electropositive ligands on the shielding of the nucleus A may be difficult to predict since the changes induced in ΔE and in the distance term or the Q_{AB} terms can be of opposite sign. Therefore relationships between calculated atomic charge densities (either total charge densities or, if appropriate, π -charge densities) and nuclear shielding must be met with some caution bearing in mind the complex dependence of $\sigma_p^{\rm loc}$ on various contributions.

2. Local symmetry, coordination number

At first sight a qualitative analysis of trends in nuclear shielding may appear even more complicated when the anisotropic quality of σ is taken into account (e.g. for linear and symmetric top molecules, (8), or for less symmetrical molecules, (9)):

$$\sigma = \frac{1}{3}(\sigma_{\parallel} + 2\sigma_{\perp}), \quad \Delta\sigma = \sigma_{\parallel} - \sigma_{\perp}, \tag{8}$$

$$\sigma = \frac{1}{3}(\sigma_{\alpha\alpha} + \sigma_{\beta\beta} + \sigma_{\gamma\gamma}), \quad \Delta\sigma = \sigma_{\alpha\alpha} - \frac{1}{2}(\sigma_{\beta\beta} + \sigma_{\gamma\gamma}), \tag{9}$$

where $\Delta \sigma$ is the screening anisotropy, σ_{\parallel} and σ_{\perp} are the screening components parallel and perpendicular to the molecular axis respectively, and $\sigma_{\alpha\alpha}$, $\sigma_{\beta\beta}$, $\sigma_{\gamma\gamma}$ are the three principal tensor components, with the convention that $\sigma_{\alpha\alpha} > \sigma_{\beta\beta} > \sigma_{\gamma\gamma}$. However, experimental and calculated data for the screening components in (8) and (9) show that changes in the isotropic value of σ may be traced mainly to changes in the magnitude of a single component or that there are changes of opposite sign in the magnitude of two or all three screening components.

Thus it has been found in the case of 13 C NMR of different linear molecules that $\sigma_{\parallel}(^{13}\text{C})$ is remarkably constant. This indicates (i) that the paramagnetic contribution to σ_{\parallel} vanishes since there is no B_0 -induced paramagnetic charge circulation about the C_{∞} or D_{∞} axis, and (ii) that the diamagnetic contribution to σ_{\parallel} remains fairly constant. If there are substituents off the molecular axis at one or at both ends of the molecule (e.g. in CH₂—C—O, CH₂—C—CH₂) the central 13 C atom will be deshielded by strong paramagnetic currents about and perpendicular to the molecular axis, as shown by 13 C solid-state NMR. Clearly, a similar situation

will be found for $\sigma_{(^{11}B)}$ in the case of iminoboranes(2) (e.g. $R^1 - B \equiv N - R^2$) and in aminoboron(1+) cations (e.g. $[R^1 - B = NR_2^2]^{+42}$):

$$tBu-B=N-tBu$$
 $Me-B=N$ $N-B=0$ $N-B=0$ $\delta^{11}B = 2.4^{53}$ 59.6^{56} 59.0^{58}

This leads to boron atoms with the coordination number 3 and a trigonal planar environment. Again it is useful to refer to the solid-state ¹³C NMR, for example of alkenes and of carbonyl compounds. ⁹⁰ There it has been shown that the smallest principal σ_p tensor component (i.e. the highest shielding) is directed perpendicularly to the molecular plane. This is consistent with the picture of B_0 -induced paramagnetic currents involving only $\sigma \rightarrow \sigma^*$ transitions, which are of high energy and therefore contribute little to the isotropic paramagnetic term σ_p (note that $\pi \rightarrow \pi^*$ transitions are magnetically inactive). Thus the strong deshielding frequently found for nuclei in a trigonal planar surround (e.g. boranes(3)) is caused by paramagnetic circulations related to $\pi \rightarrow \sigma^*$, or $\sigma \rightarrow \pi^*$ transitions, as shown by INDO calculations for $\sigma(^{11}B)$ in trimethylborane. ⁹³

Boron compounds containing boron atoms with coordination number four are borane adducts or borates and similar compounds in which the boron atom is in a tetrahedral, or distorted tetrahedral surrounding. In general, the shielding of the ¹¹B nuclei is increased in comparison with boranes(3). This may be traced to the absence of low-energy paramagnetic currents of the $\pi \leftrightarrow \sigma$ type, leading to an overall reduction of paramagnetic contributions.

The tendency of boron atoms to increase their coordination number to >3 is reflected by the amazing structural variety of polyboranes, carbaboranes, metallaboranes, etc. Although there are many $\delta^{11}B$ data available for these compounds, ^{4,6-9} their interpretation is not straightforward. In many cases the complexity of the electronic structures precludes the assignment of changes in nuclear shielding to a particular effect. In metallaboranes one should consider the electronic structure of the metal fragment, which may entail changes in ¹¹B nuclear shielding. Frequently, so-called "antipodal" effects ⁹⁵ are useful for assignment purposes, and there are various other empirical rules ⁹⁶⁻⁹⁸ to account for the $\delta^{11}B$ values.

Several systems have become available with a bonding situation that may be described as an intermediate between a carbaborane with "nonclassical" bonding and a borane with "classical" bonding. Typical examples are the borylidene-boriranes⁹⁹ and the 1,3-dihydro-1,3-diboretes:^{43,54,59}

$$\begin{array}{c|c} Me_3Si & B \\ Me_3Si & B \\ & \downarrow \\ tBu & \end{array}$$

In general, the ¹¹B nuclear shielding in the "nonclassical" systems is increased with respect to that of "classical" systems.

In the last decade a large number of boranes(3) or borates(3) have found application as π ligands in transition-metal chemistry. ^{15,16} Since the δ^{11} B values of the free ligands are available (or can be estimated), the complexation-shift Δ^{11} B is an interesting quantity for discussing the metalboron interactions. The δ^{11} B values may be discussed in a similar way to the δ^{13} C values of cyclopentadienyl or benzene metal complexes, for which some solid-state ¹³C NMR spectra have been studied in order to analyse the components of the shielding tensor. ¹⁰⁰ These studies have shown that there are significant changes in the anisotropy of the screening constant $\Delta\sigma$ (see (9)) and that this is the result of metal-ligand π interactions.

Various boranes(3) may function also as bridging ligands. In this case the formal coordination number of the boron atom is further increased. For the examples available, this is always connected with an increase in ¹¹B nuclear shielding: for example ¹⁰¹

B. Substituent effects on ^{11}B -chemical shifts, $\delta^{11}\text{B}$

The magnitude of substituent effects on ^{11}B chemical shifts depends on the local symmetry and on the coordination number of boron. The changes in the electronic structure of boron compounds induced by different substituents may be separated into changes in the σ - and π -bonding framework where appropriate. However, since there is no simple relationship between σ - or π -charge density, or $(\sigma + \pi)$ -charge densities at the boron atom and the $\delta^{11}B$ values for all boron compounds, δ^{662} it is advisable to discuss substituent effects for each class of boron compounds separately.

1. Two-coordinate boron

Although iminoboranes(2) (Table 2) are a fairly recent development in boron chemistry, there is already some variation of the substituents at the

TABLE 2 $\delta^{11} B$ and $\delta^{14} N$ values of some iminoboranes(2).

Compound	δ^{11} B	Solvent	$\delta^{14}N$	Ref.
Et—B≡N—tBu	3.3		-251	49
Pr—B≡N—tBu	2.9		-250	49
Bu—B≡N—tBu	2.3		-250	49
tBuB ≔ N—iPr	3.3		-254	248
tBu—B≡N—tBu	2.4	CDCl ₃	-254	53
$CHMe_2CMe_2$ — $B \equiv N$ — $[(2,6-iPr_2)$ — $C_6H_3]$	14.9	CDCl ₃	-267	109
C_6F_5 — B \equiv N — tBu	3.0			52
$(Me_3Si)_3C-B = N-SiMe_3$	21.0		-262.4	57, 342
$(Me_3Si)_3Si-B \equiv N-SiMe_3$	21.9		-218.3	57,342
$iPr_2NB \equiv NtBu$	5.8	C_6D_6	_	775
$tBu_2N-B\equiv N-tBu$	5.2	C_6D_6		775
tmp—B≡N—tBu	5.6	C_6D_6	-269 (N-tBu)	50
			-312 (TMP)	
$tmp-B \equiv N-(2,4,6-Me_3)C_6H_2$	12.8	C_6D_6		774
$tmpB \equiv N(2,6-iPr_2)C_6H_3$	12.1	C_6D_6		775
$tmp - B \equiv N - (2,4,6-tBu_3)C_6H_2$	13.2	C_6D_6	_	774
tmp—B≡N—SiMe ₃	17.4	C_7D_8	_	775
tmp—B≡N—SiiPr ₃	16.8	C_6D_6		775
$tmp-B \equiv N-PtBu_2$	16.6	C_6D_6		775
tmp—B≡N—AstBu ₂	17.5	C_6D_6		775

site of the imino nitrogen atom. For the boron atom there are various organyl groups, amino groups and a single example with a B—Si bond. 57,342 The trend in the δ^{11} B data corresponds closely to that observed for δ^{13} C of similarly substituted alkynes; for example

Thus the electronic structure of the B \equiv N bond is influenced by substituents in a distinct way, similar to that of the C \equiv C triple bonds in alkynes. Other NMR parameters ($^1J(NB)$, $\delta^{14}N$ and the ^{14}N linewidth, see Section IV.F.1 below) also support the usefulness of comparing the properties of isoelectronic compounds.

Bis(amido)boron $(1+)^{42,55,56,108,144,170,437}$ and a few amidoboron(1+)

cations 42,56 constitute another class of two-coordinate boron compounds. The δ^{11} B values of the bis(amido)boron(1+) cations cover a narrow range between δ^{11} B 35–39, depending on the solvent and the counterion. It appears that most of the deshielding of the 11 B nucleus in these compounds, with respect to the aminoiminoboranes, results from the change in symmetry (see Section III.A.2 above) rather than because of the positive charge. The 11 B nuclear shielding decreases further from the bis(amido)boron(1+) to the (amido)boron(1+) cations; for example

$$\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

A few examples are known where the coordination number of boron prevails after the addition of certain halides EX₃ to an aminoimino-borane(2):

The δ^{11} B values correspond closely to those of the bis(amido)boron(1+) cations.

Neutral amino(methylene)boranes containing a B=C double bond, isosteric with allenes, have been described. ^{58,831} Their δ^{11} B values are found in the same range as that for the amidoboron(1+) cations:

$$\delta^{11}B = 59.2^{58}$$
 $\delta^{11}B = 46.3^{831}$ $\delta^{11}B = 46.3^{831}$

Finally, δ^{11} B values for a borirane-2-ylideneborane(2) are available:⁹⁹

Me₃Si B(1)
$$(<11 \, ^{\circ}\text{C})$$
 $\delta^{11}B(1) = +52$ $\delta^{11}B(2) = +18$

The original assignment has been confirmed by appropriate selective ¹³C{¹H, ¹¹B} heteronuclear triple-resonance experiments. ¹⁰² However, the original arguments for the assignment have to be reconsidered in the light of MO calculations, ¹⁰³ which support significant contributions of a delocalized structure.

2. Three-coordinate boron

Substituent effects on ^{11}B nuclear shielding in trigonal boranes have been discussed repeatedly. An empirical treatment on the basis of pairwise-additive parameters 104,105 gives poor results for a larger set of $\delta^{11}B$ data. Attempts at relating the $\delta^{11}B$ data to calculated π -electron charge densities $q_{(1)B)}^{\pi_{11}}$ are promising. However, the theoretical background of this approach is questionable, especially in the absence of experimental data on the tensor components of the nuclear screening constant. Furthermore, new $\delta^{11}B$ data on diboranes(4), silylboranes(3) and related compounds indicate that the electron-density distribution in the whole bonding framework, in particular in the σ -bonds, has to be considered. This is also confirmed by NMR parameters of nuclei linked to boron in trigonal boranes. Clearly, the $\delta^{11}B$ values of trigonal boranes reflect π interactions between the formally empty p_z orbital at boron and the filled orbitals of appropriate symmetry in the neighbourhood. On the other hand, the *separation* of σ and π effects is still a formidable problem. Therefore the attempt at interpretating changes in $\delta^{11}B$ values solely in terms of π interactions leads to a gross simplification. Even in those cases where all the evidence indicates that changes in $\delta^{11}B$ values are related entirely to π interactions, the quantitative assessment of these interactions remains difficult.

(a) Triorganylboranes. There is a fairly large range of $\delta^{11}B$ values for those triorganylboranes (Tables 3-7) with weak or negligible BC(pp) π interactions. For trialkylboranes, we note the influence of the ring size. The ^{11}B -nuclear shielding is significantly decreased (approx. 5-8 ppm) if the boron atom is incorporated into a five-membered ring. This effect is also evident for B-organyl groups other than alkyl in boracyclopentanes and also in boracyclopentenes (cf. Tables 3-5). Clearly, this is an effect that originates from the nature of the B—C σ bonds in the somewhat strained five-membered ring.

The increase in 11 B-nuclear shielding that is observed with an increasing number of aryl, alkenyl or alkynyl groups attached to boron can be interpreted in various ways: (i) an increase of π -electron density q_B^{π} at the boron atom leads to increased shielding; (ii) the greater electronegativity of sp²- or sp-hybridized carbon atoms (with respect to sp³ carbon) stabilizes the (Continued p. 118)

 ${\bf TABLE~3}$ $\delta^{11}{\bf B}$ values of some representative triorganylboranes (site of unsaturation removed from boron).

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me ₃ B	86.0		5	¹³ C	205,505
Me ₂ BEt	86.1	C_6H_6	37	13C	37
MeBEt ₂	86.2	C_6H_6	37	¹³ C	37
Me ₂ B—	81.8		5	_	
Et ₃ B	86.5		5	13C	505,516
Pr ₃ B	87.0	_	44	13C	516
iPr ₃ B	84.7		5	13C	10
Bu ₃ B	86.5	Et ₂ O	5,651		516,710
íBu₃B	87.5	_	5	13C	7
sBu ₃ B	84.5	C_6D_6	41	¹³ C	7
tBu ₃ B	83.1	CH_2Cl_2	477	13C	477
$(c-C_6H_{11})_3B$	81.3	Et ₂ O	651	_	
B-R $R = Me$	92.5	C_6D_6	41		
Et Et	93.0	C_6D_6	38	_	
CMe ₂ CHMe ₂	93.3	C_6D_6	41	13C	41
B(CH ₂) ₄	92.5	CDCl ₃	48	¹³ C	48
\bigcirc B \bigcirc	90.5	CDCl ₃	834	¹³ C	834
B-R R = Me	86.0	C_6D_6	38		
R = tBu	85.5	CDCl ₃	257	13C	257
$C_8H_{14}B-R^a$ R = Me	86.5	C_6D_6	46	13C	7
Et	88.0	CDCl ₃	47	13C	503
iPr	85.0	C_6D_6	41	13C	7
sBu	87.3	CDCI ₃	47		
tBu	85.8	CDCl ₃	47	¹³ C	7
Me Mc	82.9	_	45	¹³ C	45
1-Boraadamantane	82.6		40	¹³ C ^b	480
B-ethyl-2-boraadamantane	85.0		39	_	
$(CH_2=CH-CH_2)_3B$	80.2		5	13C	777

TABLE 3 (cont.) $\delta^{11} B$ values of some representative triorganylboranes (site of unsaturation removed from boron).

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
(CH ₂ =CH-CH ₂ CH ₂) ₃ B	84.9		5	_	
Et ₂ B—CH(Ph)Et	81.7	THF	473	-	
(PhCH ₂) ₃ B	82.0	CCl ₄	5	13C	778
` -/-	82.8	Et ₂ O	651		

TABLE 4 $\delta^{11} B$ values of some representative triorganylboranes with B-alkenyl groups.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Me ₂ B—CH=CH ₂	74.5		5	13C	687
Me Me Et ₂ B H	75.7	_	5	_	
$Et Me E = Si$ Sn $Et_2B EMe_3 Pb$	80.0 83.3 83.5	Neohexane C ₆ D ₆ C ₆ D ₆	5 31 41	¹³ C, ²⁹ Si ¹³ C, ¹¹⁹ Sn ¹³ C	71 71 7,503
Et ₂ B	71.4	CCl ₄	5		ŕ
Et Et EtB BEt	69.6		5	_	
Me H MeB(CH—CH ₂) ₂	64.4	_	5	¹³ C	714
ме-В	52.8	CDCl ₃	64		
Ме-В	58.3	CDCl ₃	60	¹³ C	60
Me-B Sn Me	60.9	C_6D_6	65,66	¹³ C, ¹¹⁹ Sn	65
Ph-B	49.0	_	5	_	

^a $C_8H_{14}B = 9$ -borabicyclo[3.3.1]nonyl. ^b $\delta^{13}C(2,8,9) = 39.4$; $\delta^{13}C(3,5,7) = 46.1$; $\delta^{13}C(4,6,10) = 38.1$.

 ${\bf TABLE~4~(cont.)}$ $\delta^{11}{\bf B}$ values of some representative triorganylboranes with B-alkenyl groups.

δ ¹¹ B 53.7 52.7	Solvent C ₆ D ₆	Ref.	Other nuclei	Ref.
	C ₆ D ₆	30		
52.7				
	C_6D_6	30	_	
55.0	C ₆ H ₆	63,67	_	
68.5	CDCl ₃	142	_	
64.0	CDCl ₃	142	_	
43.0 (a) 72.0 (b)		68	¹³ C	68
56.4 68.9	C ₆ H ₆	69 5	¹³ C	69
68.7	CDCl ₃	70,71	¹³ C, ²⁹ Si	71
	68.5 64.0 43.0 (a) 72.0 (b) 56.4 68.9	68.5 CDCl ₃ 64.0 CDCl ₃ 43.0 (a) 72.0 (b) 56.4 C ₆ H ₆ 68.9	68.5 CDCl ₃ 142 64.0 CDCl ₃ 142 43.0 (a) 68 72.0 (b) 56.4 C ₆ H ₆ 69 68.9 5	68.5 CDCl ₃ 142 — 64.0 CDCl ₃ 142 — 43.0 (a) 68 ¹³ C 72.0 (b) 56.4 C ₆ H ₆ 69 ¹³ C 68.9 5 —

TABLE 5 $\delta^{11} {\rm B~values~of~some~representative~triorganylboranes~with~\emph{B-}aryl~and~\emph{B-}heteroaryl~groups.}$

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
Me ₂ B—Ph	77.6	CH ₂ Cl ₂	5	_	
B-Ph	84.5	CH ₂ Cl ₂	5	13C	36

 ${\it TABLE~5~(cont.)}$ $\delta^{^{11}}{\it B}$ values of some representative triorganylboranes with B-aryl and B-heteroaryl groups.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
B-Ph	86.2	_	82,345	¹³ C	345
B-Ph	74.0	CD_2Cl_2	83, 345	¹³ C	345
B-Ph	77.5	CH ₂ Cl ₂	38	¹³ C	36
C ₈ H ₁₄ B—Ph ^a	80.9 80.4	C_6D_6 C_6D_6	41 490	¹³ C	7,490, 712
\bigcirc B_{Pr}	82.6	CDCl ₃	36	13C	36
$R = H$ $R BMe_2 Me$ $I SMe$ $SiMe_3$	80.0 81.0 70.0 16.2 74.6	CD_2Cl_2 CD_2Cl_2 CD_2Cl_2 C_7D_8 CD_2Cl_2	141 263 263 263 263		
$\sqrt[]{O}$ BEt ₂	67.6	CH ₂ Cl ₂	35	_	
$\sqrt[]{S}$ BEt ₂	70.4	CH ₂ Cl ₂	35	_	
$\sqrt[n]{S}$	76.0	CH ₂ Cl ₂	35	¹³ C	36
\sqrt{S}	79.0	CH₂Cl₂	35	_	
BEt ₂	66.4	CH ₂ Cl ₂	35	¹³ C ¹⁴ N	36 35
MeBPh ₂ EtB[(2,4,6-Me ₃)C ₆ H ₂] ₂	70.6 85.0	CH ₂ Cl ₂ CDCl ₃	35 33,708	¹³ C	708

 ${\rm TABLE~5~(cont.)}$ $\delta^{11}{\rm B~values~of~some~representative~triorganylboranes~with~B-aryl~and~B-heteroaryl~groups.}$

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
	60.0	CH₂Cl₂	5	_	
B̃u (Me₃Si)₃C—BPh₂	77.5	C_6D_6	62	_	
$\left(\left(\left(\right) \right) \right)_{2}$ BMe	57.0	CH ₂ Cl ₂	35	¹³ C	36
S S S Me	52.6	_	34		
BEt	54.7	CH₂Cl₂	35	¹³ C	36
Ph ₃ B	68.0	CH ₂ Cl ₂	36, 146	13C	7, 10
$[(2,4,6-Me_3)-C_6H_2]_3B$	68.0 79.0	C_6D_6 CDCl ₃	490 708	13C	708
O B	58.0	C_6D_6	32		
B B	72.7	Et ₂ O	651	_	
$\left(\bigcup_{O} \right)_{3} B$	35.0	CH₂Cl₂	35	¹³ C	36
$\left(\left(\left(\left(S \right) \right) \right)_{3} B \right)$	47.3	CH ₂ Cl ₂	35	_	
$\left(\begin{array}{c} N\\ N\\ Me \end{array}\right)_3$ B	44.3	CH₂Cl₂	35	¹³ C	36

 $^{^{}a}$ C₈H₁₄B = 9-borabicyclo[3.3.1]nonyl.

 ${\bf TABLE~6}$ $\delta^{\bf 11}{\bf B}$ values of some representative triorganylboranes with a B-alkynyl group.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me ₂ B—C=C—Me	71.7	C ₆ H ₆	85	¹³ C	524
$Me_2B-C=C-Ph$	71.0	C_6H_6	38	_	
$Me_2B-C=C-BMe_2$	73.5	C_6H_6	85	_	
Et ₂ B—C=C—Me	73.2		27	_	
$C_8H_{14}B-C=CtBu^a$	72.0	C_6H_6	86,87		
$\bigcirc B-C \equiv C-B$	76.3	C ₆ H ₆	85	_	
$CHMe_2CMe_2B$ C C Bu	62.0	CDCl ₃	51	_	
PhB(C≡C—Me) ₂	40.0	CH ₂ Cl ₂	85	_	

 $^{^{}a}$ C₈H₁₄B = 9-borabicyclo[3.3.1]nonyl.

 ${\bf TABLE~7}$ $\delta^{\rm 11}{\bf B}$ values of miscellaneous triorganylboranes, neutral and anionic.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Bu ₂ BCH(SiMe ₃)Bu C ₈ H ₁₄ BCH ₂ —SiMe ₃ B(CH ₂ SiMe ₃) ₃	83.0 85.9 78.4	CDCl₃ pentane	260 257 41		257 41
Me ₃ Si Me tBu-B B-tBu Me SiMe ₃	81.0	C_6D_6	110	¹³ C	110
Me ₃ Si tBu-B B-tBu SiMe ₃	42.0	C_6D_6	110	⁷ Li, ¹³ C	110
HC(BEt ₂) ₃	82.0		72		

 ${\rm TABLE~7~(cont.)}$ $\delta^{11}{\rm B}$ values of miscellaneous triorganylboranes, neutral and anionic.

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
R^2	R²				
(~D / 'R'					
$\begin{bmatrix} R^1 & B \\ R^2 & B \end{bmatrix} = \begin{bmatrix} R^1 & B \\ R^1 & Me \end{bmatrix}$	н 63.2		73		
R^2 R^2 Et	H 67.0	CCl ₄	72		
R^2 R^1 Et	Me 65.0	C_7D_8	74	13C	74
Me ₃ Si Me					
C ₈ H ₁₄ B H	79.3	CDCl ₃	257	¹³ C	257
Me ₃ Si	+83.0(a)		75	¹³ C	75
Me₃Si B(a) (a)	+34.5 (b)				
tBu CH ₂ {B[(2,4,6-Me ₃)—C ₆		~~ ~!	-	¹³ C	~
Me₃Sn Et	80.0	CDCl ₃	76	C	76
EtB Me	<i>.</i>	~~ ~·		¹³ C, ¹¹⁹ Sn	22
Me Et SnMe ₃	64.0	CDCl ₃	77	C, Sn	77
BMe ₂	74.3		78	_	
TiCl ₃					
BMe ₂	72.0	CS ₂	29	_	
Mn(CO) ₃					
BMe ₂	71.6	CS ₂	29	_	
Fe cp					
(B	73.2	C_6H_6	28	_	
Cr(CO) ₃					
$\{[(2,4,6-Me_3)-C_6H_2]_2H$	CH ₂ }=Li ⁺				
([(=, -, 0 03) 06112]21	41.0	diglyme	79	-	
	40.4	THF	828		

 ${\bf TABLE~7~(cont.)}$ $\delta^{11}{\bf B}$ values of miscellaneous triorganylboranes, neutral and anionic.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
PhB Li ⁺	27.0	THF	80	_	
PhB TI+	33.8	DMSO	81	¹³ C	81
Ph PhBPh Ph 2K+	29.0	THF	67	_	
$Ph_3PC(Me)B(c-C_5H_9)_2$	56.0	C_6D_6	61	³¹ P	61
$\begin{bmatrix} Me_3Si \xrightarrow{tBu} H \\ Bu \\ SiMe_3 \end{bmatrix} K^+$	40.4	C ₆ D ₆	110	¹³ C	110

TABLE~~8 $\delta^{11}B$ values of some diorganylboronhydrides $R_2BH.$

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
(Me ₂ CHCMe ₂) ₂ BH	81.1	THF	114	_	
[EtCH(SiMe ₃)] ₂ BH	83.0	THF	276	_	
$tBu(C_6H_{11})BH$	82.1	Et ₂ O	371	_	
(Mc ₃ Si) ₂ CH-C(H B 1Bu	27.0	CDCl₃	151	¹³ C	151

TABLE~~9 $\delta^{11}B$ values of some diorganylboronhalides $R_2BX.$

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Me ₂ BF	59.0		107	{ ¹³C ¹9F	7 526, 766
Me ₂ BCl	77.2	_	107	{ ¹³C ₃⁵Cl	7 335
Me ₂ BBr	78.8	CCI ₄	336	¹³ C	10
Me₂BI	79.1		337		
Et ₂ BF	59.6		107	¹⁹ F	526,766
Et ₂ BCl	78.0		107	13C	7
Et ₂ BBr	81.9		337	13C	7
Et ₂ BI	84.4		337	_	
B-Cl	82.6	C ₆ H ₆	5	_	
В-Вг	85.2	CH ₂ Cl ₂	5		
iPr ₂ BF	59.0	C_6D_6	145	13C	143
iPr ₂ BCl	77.8	C_6D_6	145	13C	143
iPr ₂ BBr	82.4		143	13C	143
iPr ₂ BI	86.1		143	_	
$C_8H_{14}B-X^a$ $X = Cl$	78.6		338	13C	7
Br	82.2		338	_	
I	84.2		338		
tBu₂BF	57.5		143	13C	143
tBu ₂ BCl	77.7		143	13C	143
tBu₂BBr	82.4		143	¹³ C	143
tBu ₂ BI	87.7		143	13C	143
BCI	74.0	Et ₂ O	372	_	
BCI	78.0	Et ₂ O	372	_	
$(C_5Me_5)_2BCl$	74.2	CD_2Cl_2	284	_	
Ph ₂ BF	47.4		337		
Ph ₂ BCl	61.0		107	13C	10
Ph ₂ BBr	66.7		337	13C	10
_	64.8		343	_	
Ph ₂ BI	69.1		337		

TABLE~9~(cont.) $\delta^{11}B$ values of some diorganylboronhalides $R_2BX.$

Compound		δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
	X = Cl Br I	61.5 65.8 64.0		138 138 138	¹³ C —	7
		65.9	CS ₂	339	_	
(CH ₂ =CH) ₂ BF (CH ₂ =CH) ₂ BCl (CH ₂ =CH) ₂ BBr		42.4 56.7 60.1		69 69 69	¹³ C ¹³ C ¹³ C	69 69 69

 $^{^{}a}$ C₈H₁₄B = 9-borabicyclo[3.3.1]nonyl.

 ${\it TABLE~10}$ $\delta^{^{11}}{\it B}$ values of some diorganylboron—oxygen compounds. a

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me ₂ BOMe	53.0	_	107	¹³ C	205
Me₂BOiPr	52.1		262	¹⁷ O	350
Me₂BOtBu	50.8		115	_	
Me_2B-O-N	52.7	CH ₂ Cl ₂	229	¹³ C	229
Me ₂ BOSiMe ₃	51.6		115	_	
$(Me_2B)_2O$	52.0	_	7	_	
Et ₂ BOMe	53.6	_	107	{ ¹³C ¹′O	7 350
$(Et_2B)_2O$	53.3		116	{ ¹³ C ₁₇ O	116 350
(Et ₂ BOAlCl ₂) ₂	60.6	C_7D_8	266	¹³ C, ¹⁷ O, ²⁷ Al	266
В-ОМе	60.8	C ₆ D ₆	117	¹³ C ¹⁷ O	7 350
B-Et	57.0	C_7D_8	117	¹³ C ¹⁷ O	7 117

TABLE 10 (cont.) δ^{11} B values of some diorganylboron—oxygen compounds.²

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
В-ОМе	52.2	CDCl₃	257	¹³ C	257
$C_8H_{14}B$ — $OR^{b,c}$					
R = H	58.8	CDCl ₃	117	${13 \atop 17}$ C	7 117
Me	56.3	C_6D_6	117	{ ¹³C ₁′O	7 117,
tBu	55.7	C_7D_8	117	$\left\{ ^{13}C\atop ^{17}O\right.$	350 7 117
SiMe ₃	58.9	C_6D_6	117	$\begin{cases} {}^{13}C \\ {}^{17}O \end{cases}$	7 117
BC ₈ H ₁₄ CH ₂ CF ₂ CF ₂ H CH ₂ CH ₂ C ₆ F ₁₃	59.3 59.0 57.8	C ₆ D ₆ CDCl ₃ CDCl ₃	117 436 436	¹⁷ O ¹³ C, ¹⁷ O ¹³ C, ¹⁷ O	117 436 436
В-Ме	54.7	CDCl ₃	257	¹³ C	257
tBu(Me)BOiPr tBu₂BOMe	52.9 51.0	— CH₂Cl₂/C₀D₀	262 143	 ¹³ C	143
Ph(iPr)BOiPr	48.6	-	262		
Ph ₂ BOMe	45.7	_	146	_	
Ph₂BOEt	45.1	_	119		
OMe OMe	46.0	CDCl ₃	138	_	
$(Ph_2B)_2O$	46.0	_	7	13C	10
[(CH2=CH)2B]2O	39.0	_	120	¹³ C	120
МеО-В В-ОМе	35.0		340	_	

^a For more data see Refs 5 and 7. ^b $C_6H_{14}B = 9$ -borabicyclo[3.3.1]nonyl. ^c For $\delta^{11}B$ values of other *B*-(alkoxy)-9-borabicyclo[3.3.1]nonanes see Ref. 375.

TABLE~~11 $\delta^{11}B$ values of some diorganylboron–sulphur and –selenium compounds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me ₂ BSMe	73.6		121	¹³ C	205
Me ₂ BSeMe	79.4	CS_2	5,7	_	
$(Me_2B)_2S_2$	75.4	CS ₂	121		
$(Me_2B)_2Se_2$	79.7	CS ₂	5,7		
$(Me_2B)_2S$	78.7	_	121	_	
Et ₂ BSMe	75.4	_	5,7	_	
B-SMe	80.5	CH ₂ Cl ₂	5		
SB-Bu	80.0	_	122	_	
C ₈ H ₁₄ B—SMe	76.0	C_6H_6	123		
Ph ₂ BSMe	67.0	CH ₂ Cl ₂	124		
$[(2,4,6-Me_3)C_6H_2]_2BSR$	70-73	CDCl ₃	125	13C	125
$[(2,4,6-Me_3)C_6H_2]_2BSeMe$	79.5	CDCl ₃	126	¹³ C	125
B _{SMe}	61.9	C_6D_6	138	_	
R^1 B^u R^2 S'	59–62	CH₂Cl₂	207	¹³ C	207
$Et \xrightarrow{R} B Se \qquad R = Me Bu$	69.6 71.9	CH₂Cl₂ CH₂Cl₂	206 206	¹³ C ¹³ C, ⁷⁷ Se	206 206

 ${\bf TABLE~~12}$ $\delta^{\rm 11}{\bf B}$ values of some representative amino-diorganylboranes.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me ₂ BNH ₂	47.1	_	127	{ 13C 15N	153 7
Me₂BNHMe	45.7		107	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	153 128
Me ₂ BNMe ₂	45.0	_	107	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	205 128
Me ₂ BNEt ₂	44.9		107	$\left\{ ^{^{13}\text{C}}_{^{14}\text{N}}\right.$	153 128
Me ₂ BN	49.6	CDCl ₃	368	¹³ C	368
Me ₂ BN(H)Ph	48.0		128	$\begin{cases} {}^{14}N \\ {}^{15}N \end{cases}$	128 182
Me ₂ BN(Me)Ph	46.5		128	14N	128
Me ₂ BNPh ₂	49.6	CCl₄	129		
Me ₂ BN	56.2	CH₂Cl₂	152	${13C, 15N \choose 14N}$	779 152
Me ₂ BN(tBu)SSMe	56.0	CH ₂ Cl ₂	285		
Me ₂ BN(Me)SO ₂ Me	54.0	CH ₂ Cl ₂	5,7		
	55.8		279		
Me ₂ BN(H)NMe ₂	45.5		130	14N	128
$Me_2BN(Me)PMe_2$	53.0	-	131	³¹ P	131
Me ₂ BN(H)SiMe ₃	51.6	_	132	${13 \choose 14}$	153 132
Me ₂ BN(Me)SiMe ₃	51.4		132	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	153 132
Me ₂ BN(OSiMe ₃)SiMe ₃ Me ₂ BN(OBMe ₂)SiMe ₃	50.5 47.9(BN)	_	225		102
2(2 / -3	54.5(BO)	CH ₂ Cl ₂	230		
Me ₂ BN(SiMe ₃) ₂	59.5		132	${13 \choose 14}$	153
Me ₂ BN(SnMe ₃) ₂	53.4	CH ₂ Cl ₂	133	¹³ C, ¹⁴ N,	132 133
(Me ₂ B) ₂ NH	56.1	_	134	¹¹⁹ Sn ¹⁴ N	7
$(Me_2B)_2NMe$	58.5	_	134	14N	7
$(Me_2B)_2NSnMe_3$	58.4	CH ₂ Cl ₂	135	14N	135
$(Me_2B)_2NSMNe_3$ $(Me_2B)_3N$	61.5	CH ₂ Cl ₂	135	14N	135, 182
Me ₂ BNMeLi	44.0	Et ₂ O	136		,
Me ₂ BN(Li)NMe ₂	42.6	THF	272	_	

 ${\bf TABLE\ \ 12\ \ }(cont.)$ $\delta^{\rm 11}{\bf B}$ values of some representative amino-diorganylboranes.

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
Me ₂ BNMe ₂ —AlCl ₃	74.3	CH ₂ Cl ₂ /C ₆ D ₆	148	¹⁴ N	148
Et ₂ BNH ₂	48.7	_	128	$\left\{ ^{^{13}\mathrm{C}}_{^{14}\mathrm{N}}\right.$	153 128
Et ₂ BNMe ₂	45.7	-	107	$\left\{ ^{13}C\atop {}^{14}N\right.$	153 128
$Et_2BN(SnMe_3)_2$	54.7	CH ₂ Cl ₂	268	¹³ C, ¹⁴ N, ¹¹⁹ Sn	268
(Et ₂ B) ₂ NtBu	59.1	CCl₄	49		
B-NMe ₂	51.3	CH ₂ Cl ₂	153	¹³ C, ¹⁴ N	153
iPr ₂ BNH ₂	49.5	-	143	¹³ C, ¹⁴ N	143
iPr ₂ BNMe ₂	45.6	_	143	¹³ C, ¹⁴ N	143
iPr ₂ BN(SnMe ₃) ₂	55.0	CH ₂ Cl ₂	268	¹³ C, ¹⁴ N, ¹¹⁹ Sn	268
$C_8H_{14}BNMe_2{}^a$	47.0	C_6D_6	154	<u></u>	
$(C_8H_{14}B)_3N^a$	67.0	THF	155	¹³ C, ¹⁴ N	155
tBu(iPr)BN	67.7	CDCl ₃	812	¹³ C	812
tBu ₂ BNH ₂	48.7		143	¹³ C, ¹⁴ N	143
tBu ₂ BNMe ₂	49.9		143	¹³ C, ¹⁴ N	143
$(CF_3)_2BNMe_2$	30.2	CDCl₃	218	¹³ C, ¹⁹ F	218
Ph ₂ BNMe ₂	41.8	C_6H_6	128	$\left\{\begin{smallmatrix} ^{13}\mathrm{C} \\ ^{14}\mathrm{N} \end{smallmatrix}\right.$	10 128
[(2,4,6-Me ₃)C ₆ H ₂] ₂ BNRR'	43-49	CDCl ₃	156	13C	156
B NMe ₂	38.5	CDCl ₃	138	-	
	₄ ⁻ 43.5	CH ₂ Cl ₂	256	²⁷ Ai	256
Ph ₂ BN ₃ [(2,4,6-Me ₃)C ₆ H ₂] ₂ BN ₃	50.6 54.3	CDCl₃ CCl₄	217 217		
$(CH_2 = CH)_2BNMe_2$	37.0	—	35	_	

 ${\bf TABLE\ 12\ (cont.)}$ $\delta^{\rm 11}{\bf B}$ values of some representative amino-diorganylboranes.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
B N	28.4	Hexane	157	_	
$R = B-N(SiMe_3)_2$ $R = alkyl$	25.0		150	¹³ C, ²⁹ Si	150
B-N	33.9	MeCN	139	¹³ C	139
B NO	33.0	pyridine	139	13 _C	139
$Me_2N-B \bigcup_{C}^{C} B-NMe_2$ tBu	33.0	C_6D_6	43	¹³ C	43
$\begin{bmatrix} \bigcirc \\ N \\ SiMe_3 \end{bmatrix} Li^+$	29.0	THF	158	_	
(HC≡C) ₂ BNMe ₂	22.0	CH ₂ Cl ₂	85	_	
$\left[\bigcirc B - NiPr_2 \right] 2Li^+$	22.0	THF	84, 161	¹³ C	162
NiPr ₂ B-NiPr ₂	44.0	CD₂Cl₂	162	¹³ C	162
Me_3Si C $B-NiPr_2$ C	31.4	CDCl ₃	646	¹³ C	646

 ${\bf TABLE\ 12\ } (cont.)$ $\delta^{11}{\bf B}$ values of some representative amino-diorganylboranes.

	_				
Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
$\begin{bmatrix} Me_3Si & C \\ iPr_2N-B & B-NiPr_2 \\ C & SiMe_3 \end{bmatrix}^{2-1}$	12.0	C_6D_6	646	¹³ C, ²⁹ Si	646
$Me_{3}Si R$ $r_{2}N-BB-NiPr_{2}$ $R = H$ $SiMe_{3} R = H$	43.5 e 48.7	CDCl ₃ C ₆ D ₆	646 646	¹³ C, ²⁹ Si ¹³ C	646 646
Me ₃ Si SiMe ₃ iPr ₂ N-B B-NiPr ₂ Ph ₃ PAu AuPPh ₃	45.9	C_6D_6	646	³¹ P	646

 $^{^{}a}$ C₈H₁₄B = 9-borabicyclo[3.3.1]nonyl.

 ${\it TABLE~13}$ $\delta^{11}{\it B}$ values of some halogeno–organylboranes ${\it RBX_2}^a$

Compound	$\delta^{11}\mathrm{B}$	Solvent	Ref.	Other nuclei	Ref.
MeBF ₂ EtBF ₂ tBuBF ₂	28.2(76) 28.7(81) 29.9	 C ₆ D ₆	180 107 118	¹⁹ F ¹³ C ¹³ C	526, 766 153 118
→BF ₂	28.3 28.5		177 275	¹³ C	275
PhBF ₂ CH ₂ —CHBF ₂ MeBCl ₂	25.5(62) 22.6 62.3	Methyl- cyclohexane	178 69 180	{ 13C 19F 13C 35Cl	36 526, 766 69 335
EtBCl ₂	63.4		107	_	300

 ${\bf TABLE~13~(cont.)}$ $\delta^{11}{\bf B}$ values of some halogeno–organylboranes RBX2.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
CHMe ₂ CMe ₂ BCl ₂	65.2	_	376	_	
	65.4	CH ₂ Cl ₂	376		
	64.9	Et ₂ O	376	_	
├─BCl₂	59.4		177	_	
PhBCl ₂	54.8		107	13C	36
CH ₂ =CHBCl ₂	52.4		179	_	
BCl ₂	48.9	CCl ₄	281	_	
Me H Cl ₂ B-C ₅ H ₄ —TiCl ₃	50.6	CH CI	70	¹³ C	70
$Cl_2B-C_5H_4InCl_3$ $Cl_2BC_5H_4Mn(CO)_3$	50.6 50.6	CH₂Cl₂	78 29	C	78
$Cl_2B-C_5H_4-Vin(CO)_3$ $Cl_2B-C_5H_4-Fecp$	50.5	CS ₂ CS ₂	29 29		
$Cl_2B-C_5Me_5$	59.9	CS_2	29 78		
$(Cl_2B)_2C_5H_4$	50.8	CCl ₄	283	_	
$CH_2(BCl_2)_2$	59.3	CDCl ₃	283 194	_	
MeBBr ₂	62.5	CDCI ₃	180	_	
EtBBr ₂	65.6		180	_	
Et(Pr)CHBBr ₂	67.0	CDCl ₃	140		
PhBBr ₂	57.7	_		13C	26
PIIDDI2	37.7	Methyl- cyclohexane	178	C	36
	56.2	CDCl ₃	343		
CH ₂ =CHBBr ₂	54.7	CDC13	69	_	
MeBI ₂	50.5		180		
EtBI ₂	55.9		180		
tBuBI ₂	60.0	C_6D_6	118	¹³ C	118
PhBI ₂	48.2	0020	180	¹³ C	36
$C_5H_4(BI_2)_2$	36.8	CCl ₄	283	13°C	283
$(CO)_3MnC_5H_4BI_2$	31.7	CS ₂	29	_	205
cpFeC ₅ H ₄ BI ₂	26.1	CS ₂	29	_	
$CH_2(BI_2)_2$	45.5	CDCl ₃	194	_	
MeB(F)Cl	43.8(100)	3	181	¹⁹ F	181
PhB(F)Cl	40.9(93)	Methyl-	178	19F	178
,	()	cyclohexane		-	2.0
MeB(F)Br	45.2(112)	•	181	19F	181
PhB(F)Br	42.6(92)	Methyl-	178	19F	178
		cyclohexane			
MeB(Cl)Br	61.5		181	_	
PhB(Cl)Br	56.0		181	_	

 $^{^{}a}$ $^{1}J(^{19}F^{11}B)$ in Hz in parentheses.

 ${\bf TABLE~14}$ $\delta^{11}{\bf B}$ values of some organylboron—oxygen compounds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
MeB(OH) ₂	31.9	D ₂ O	193		205
MeB(OMe) ₂	29.5		108	$\left\{ ^{13}C_{17}O\right.$	205 350
MeB(OiPr) ₂	30.2		193		
EtB(OMe) ₂	31.5		108	${13 \atop 17}$ C	7 350
tBuB(OiPr) ₂	29.5		262	-	
PhB(OH) ₂	28.8	THF	195	-	
PhB(OMe) ₂	28.6	C_6H_6	182	13C	36
PhB(OMe) ₂	27.8		196		
(1E)-1-octenyl—B(OMe) ₂ HC=C—B(OMe) ₂	21.6	_	183		
B(OiPr) ₂	23.3		262	_	
(Me ₃ Si) ₃ CB(OMe) ₂	31.0	CCl ₄	184	*********	
R = Me	34.2		650		
Et Et	35.0	Neohexane	185	{ ¹³ C ₁₇ O	7 117
O Ph	31.2	CH₃CN	187	13C	36
3 1	31.2	CDCl ₃	56	_	
R = Et	30.5	Neohexane	185	$\begin{cases} {}^{13}C \\ {}^{17}O \end{cases}$	7 117
tBu	31.1		650	_	
exo-norbornyl—CH ₂	30.5	-	278		
Ph—CH ₂	30.5	THF	261		
F:-P				∫ 13C	7
Et-B _O	38.6	C_7D_8	117	{17O	117
Et-B Me	34.4	C_7D_8	117	${13 \choose 17}$ O	7 117
Me-B	35.5	CDCl ₃	188	¹³ C	188
Me-B B-Me	35.5		186		
Ph-B	31.9	CS ₂	189	_	

 ${\it TABLE~14~(cont.)}$ $\delta^{^{11}}{\it B}$ values of some organylboron—oxygen compounds.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
,O, tj	Bu				
$4.6 - tBu_3)C_6H_2B$	33.5 1e	_	277	_	
$[(2,4-tBu_2)C_6H_3-BO]_2$	33.0	_	277	_	
$[(2,4,6-tBu_3)C_6H_2BO]_2$ R	32.4	_	277		
Ph-B N-R					
$P_h R = Me$	21.8	CDCl ₃	287	_	
C_6H_1					
(a. z. – a.)	(single resona		2::	(13.0	_
(MeBO) ₃	32.5	C ₆ H ₆	264	{ 13C 117O	7 350
	32.5	CDCl ₃	190	(¹³ C	350 7
(EtBO) ₃	33.5	C_6D_6	117	$\left\{ ^{13}_{17}C\right.$	117
(PhBO) ₃	30.4	C_6D_6	117	` <u> </u>	
(CH₂=CHBO) ₃	28.0	C_6D_6	120	_	
$\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right)_{2}^{B}$	27.5	CH₂Cl₂	269		
Me (a) B O Me (b) H Me Me Me Me	31.8(a) 7.3(b)	C ₇ H ₈	264	¹³ C, ¹⁷ O	264
MeB BMe Cl ₂ Al OAlCl ₂ MeB BMe	31.8	$\mathrm{C_7D_8}$	265	¹³ C, ¹⁷ O, ²⁷ Al	265
MeB(F)OMe MeB(Cl)OMe	29.7(85.0) 42.0	Pentane Pentane	191 107	_	

 ${\bf TABLE~15}$ $\delta^{\rm 11}{\bf B}$ values of some organylboron—sulphur and —selenium compounds.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
MeB(SMe) ₂	66.3	C ₆ H ₆	197	¹³ C	205
MeB(SCF ₃) ₂	66.7	_	198	19F	198
$MeB(SSiMe_3)_2$	70.5	-	199	²⁹ Si	199
MeBS	69.6	CH ₂ Cl ₂	124		
MeB S	61.5	CH ₂ Cl ₂	200	¹³ C	200
MeB S	62.2	CH ₂ Cl ₂	188	¹³ C	188
S-S $R = Me$	70.6	_	201	13C	7
RB BR tBu	75.1		286	_	
PhB(SMe) ₂	65.0	CH ₂ Cl ₂	124	13C	273
PhB S	66.2	CH ₂ Cl ₂	36	¹³ C	36
PhB S	59.1	CH₂Cl₂	200	¹³ C	36, 200
PhB S	58.7	CDCl₂	273	¹³ C	273
(PhBS) ₃	58.3	CH ₂ Cl ₂	124	_	
, , , <u>, -</u>	63.8	CDCl ₃	258		
(PhBS) ₂	45.7	THF	258	13C	258
Cl_B_S_Cl	72.5	CDCl ₃	203		
MeB(OMe)SMe	48.5		191		
PhB	47.7	_	204		
MeB(SeMe) ₂	73.0	CH ₂ Cl ₂	205	{ 13C 77Se	205 182
Se—Se MeB BMe	77.2	CS ₂	5,7	_	
PhB(SeMe) ₂	70.3	CS ₂	5,7	_	

 ${\bf TABLE~16}$ $\delta^{\rm 11}{\bf B}$ values of some noncyclic organylboron—nitrogen compounds.

			-	
δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
31.7		128	¹⁴ N	128
33.5	_	107		205 128
33.8	_	107	14N	128
34.8	CH ₂ Cl ₂	152	¹⁴ N	152
30.8	C_6H_6	130	14N	128
41.2		132	¹⁴ N	132
36.5(a) 61.3(b)	CH ₂ Cl ₂	208	¹⁴ N	208
38.5	C_7D_8	148	¹⁴ N	148
33.1	_	107	14N	128
34.2	_	107	¹⁴ N	128
39.4	_	152	$\left\{^{^{13}\text{C}}_{^{14}\text{N}}\right.$	779 128
40.2	CDCl ₃	812	¹³ C	812
36.4		5,7	13C	7
26.3	CDCl ₃	218		218
30.4	_	128	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	273 128
32.4		128	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	36 128
37.0	CH ₂ Cl ₂	152	¹⁴ N	152
31.2	C_6H_6	130	_	
30.2	_	35		
23.8			¹³ C	10
	CCl₄		_	
		127	_	
38.5 40.4	 CCl ₄	107 234	_	
	31.7 33.5 33.8 34.8 30.8 41.2 36.5(a) 61.3(b) 38.5 33.1 34.2 39.4 40.2 36.4 26.3 30.4 32.4 37.0 31.2 30.2 23.8 42.9 42.1	31.7 — 33.5 — 33.8 — 34.8 CH ₂ Cl ₂ 30.8 C ₆ H ₆ 41.2 — 36.5(a) CH ₂ Cl ₂ 61.3(b) 38.5 C ₇ D ₈ 33.1 — 34.2 — 39.4 — 40.2 CDCl ₃ 36.4 — 26.3 CDCl ₃ 30.4 — 32.4 — 37.0 CH ₂ Cl ₂ 31.2 C ₆ H ₆ 30.2 — 23.8 C ₆ H ₆ 42.9 CCl ₄	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 ${\it TABLE~16~(cont.)}$ $\delta^{^{11}}{\it B}$ values of some noncyclic organylboron—nitrogen compounds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
MeB(I)NMe ₂	34.7	C ₆ H ₆	191		
MeB(OMe)NMe ₂	31.8	_	152	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	71 152
MeB(SMe)NMe ₂	43.6	_	152	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	71 152
MeB(SiMe ₃)NMe ₂	50.2	_	202	_	132

 ${\bf TABLE~17}$ $\delta^{\rm 11}{\bf B}$ values of some cyclic organylboron—nitrogen compounds.

Compo	ınd		δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
	R	R ¹					
	Me	Me	31.6	_	209	¹³ C, ¹⁴ N	245
R^1	Me	Ph	33.4	C_6D_6	210		
,Ñ	tBu	Me	32.6		211	_	
RB(CF ₃	Me	24.9	CDCl ₃	218	¹³ C, ¹⁹ F	218
N R ¹	Ph	Me	32.2		211	¹³ C	
R'	CH₂=CH	Me	29.9		212	14N	
	MeC≔C	Me	24.9		85		
	Me	Me₃Si	38.2		132		
	Me	Me_2B	45.7	CH ₂ Cl ₂	213	14N	213
			(MeB)				
			60.6				
\mathbb{R}^1	R	R^1	(Me ₂ B)				
B N	Me	Me	29.2		214	¹³ C	273
N- R ¹	Ph	Me	29.5		215	¹³ C	273
tBi N MeB N tBi			26.2	CDCl ₃	219	_	
MeB MeB N			31.1	CDCl₃	188	¹³ C	188

 ${\bf TABLE~17~(cont.)}$ $\delta^{\rm 11}{\bf B}$ values of some cyclic organylboron—nitrogen compounds.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
R ¹ N N RB N N R ²					
$R R^1 R^2$					
Me Me Me Me Ph Ph Et tBu Ph Et tBu Me ₃ Si Mes Mes BMes ₂	26.8 26.9 26.6 28.7 29.6 52.5	— CCl ₄ CCl ₃	216 216 49 49 217		
Me Me	(BMes) ₂				
MeB CH ₂ N-N Me Me Me Me Me Me	28.0	CH₂Cl₂	221	13C	221
N-N RB BR F N-N Me Me	R = Me 32.2 Ph 32.3	_ CH₂Cl₂	222 231	¹³ C	36
Me Me Me MeB P-Me Me	31.4	CH₂Cl₂	223	³¹ P	223
Me Me Me MeB BMe Me	31.3	CH₂Cl₂	220	_	
Et O N-C MeB NEt N-C Et O	34.8	CDCl ₃	232, 233	¹³ C	232, 233

 ${\bf TABLE~17~(cont.)}$ $\delta^{11}{\bf B}$ values of some cyclic organylboron–nitrogen compounds.

Compound			δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
tBu N							
BuB P-	N(SiN	$Me_3)_2$	36.1	_	224	¹³ C, ³¹ P	224
tBu N	Me₂		26.4		226		
MeB Sil N tBu	vie ₂		36.4		220	_	
Me ₃ Si MeB N Me ₃ Si	in)		43.5	Pentane	274	¹¹⁹ Sn	274
R ¹	R	R¹					
RB BR	Me	tBu	42.5	CH_2Cl_2	227	¹³ C, ¹⁴ N ¹³ C	227
N ₁	tBu	iPr	45.8	CDCl ₃	228	¹³ C	228
K.	tBu	tBu	41.0	CCl₄	53		
	tBu	Me ₃ Si	43.2	CDCl ₃	228	¹³ C, ²⁹ Si	228
	Ph	tBu	42.5	CH ₂ Cl ₂	227	¹³ C, ¹⁴ N	227
Me N	E	X					
BMe	В	Cl	38.1 9.4	CD ₂ Cl ₂	245	¹³ C, ¹⁴ N	245
Me EX ₃	В	Br	(BCl ₃) 38.0 -4.7	CD_2Cl_2	245	¹³ C, ¹⁴ N	245
	В	I	(BBr ₃) 37.6 -55.1	CD_2Cl_2	245	¹³ C, ¹⁴ N	245
		CI	(BI_3)	C D	246	¹³ C, ²⁷ Al	246
	Al	Cl Pr	38.3 38.2	C_6D_6 C_6D_6	246 246	¹³ C, ²⁷ Al	246
	Al Ga	Br Cl	38.2 37.6	C_6D_6	246	13C AI	246
(M-DNIII)	Ua	CI		C6126		(13C	153
(MeBNH) ₃			34.5	_	107	{ 14N	249
(MeBNMe)	3		35.9	_	107	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	153 249
(MeBNtBu)2		36.7	CH ₂ Cl ₂	227	¹³ C, ¹⁴ N	227

 ${\bf TABLE~17~(cont.)}$ $\delta^{\rm 11}{\bf B}$ values of some cyclic organylboron—nitrogen compounds.

Compound			δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
(MeBNPh) ₃			35.8	CHCl ₃	267	¹³ C	267
(EtBNMe) ₃			35.5		107		
(iPrBNtBu) ₃			30.1	CDCl₃	248		
(tBuBNMe) ₃			38.5	CDCl ₃	228	¹³ C	228
(tBuBNEt) ₃			40.0	CDCl ₃	228	13C	228
(tBuBNiPr) ₃			29.9 (20°C)	CDCl ₃	228	13C	228
			35.9	CDCl₃/ CH₂Cl₂	228	¹³ C	228
			13.1	(5%)			
		(2	:1, -50°C)			
(tBuBNPh) ₃		•	40.5	CDCl ₃	228	¹³ C	228
(tBuBNH) ₃			37.0		247	(13 C	153
(PhBNH) ₃			33.8	CH ₂ Cl ₂	249	{ 14N	249
(PhBNMe) ₃			36.7	CDCl ₃	153	13C	153 249
(CH ₂ =CHBNH): Me Me			31.8	_	250	_	
Me-B N	Me EX ₃	x					
	Al	Br	37.1(a)	C_7D_8	251	_	
	~	CI.	42.9(b)	C D	251		
	Ga	Cl	41.5	C_7D_8	251		
(1 (D) (D)		(S	ingle signal)	227	13 C 14 N	227
(MeBNtBu) ₄			37.5	CH ₂ Cl ₂	227	¹³ C, ¹⁴ N ¹⁴ N, ¹¹⁹ Sn	227
(MeBNSnMe ₃) ₄ Me ₂ SiN NSi	iMe₃		38.7	CH ₂ Cl ₂	227	IN, SII	227
Me ₃ SiN NSi	le		37.3	CDCl ₃	271	¹³ C, ¹⁴ N, ²⁹ Si	271
BCI Pr			38.7		235		
CIB BCI			54.0	CDCl ₃	203	_	

 ${\it TABLE~17~(cont.)}$ $\delta^{^{11}}{\it B}$ values of some cyclic organylboron—nitrogen compounds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
O _N B	34.4	CH ₂ Cl ₂	188	¹³ C	271
Me Me N-N X = O MeB C X S	31.7 31.4	CH ₂ Cl ₂ CH ₂ Cl ₂	231 231		
Me Me N-N MeB BMe	31.5	CH₂Cl₂	237	_	
O-O MeB BMe SiMe ₃	38.3	CH ₂ Cl ₂	238	_	
Me Me N-B N-B Me Me	32.8 (BN ₂) 34.6 (BON)		239	¹³ C, ¹⁴ N	239
N _B O	32.0	C ₆ D ₆	240	¹³ C	240
B-Bz	33.6	CCl₄	192	_	
PhB NSiMe ₃ N-B MeO Ph	32.2 (single broad signal)	CH ₂ Cl ₂	230	¹³ C	230
$Me_{2}Si_{N}B-O-OEt$ $Me_{1}Me$	30.0	C_7D_8	236	¹³ C, ¹⁴ N, ¹⁷ O, ²⁹ Si	236
S BMe N Ph	46.8	CH ₂ Cl ₂	124	_	

 ${\it TABLE~17~(cont.)}$ $\delta^{\rm 11}{\it B}$ values of some cyclic organylboron—nitrogen compounds.

Compound		δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
S BMe H		45.1	CH₂Cl₂	188	¹³ C	188
	<u>R</u>					
Me ₃ SiN NR NR HeB BMe	Ph	51.5	CDCI ₃	241	¹³ C, ¹⁴ N, ²⁹ Si ¹³ C, ²⁹ Si	241
S	SiMe ₃	52.6	CCl ₄	242	¹³ C, ²⁹ Si	242
Me Me Me N-N		40.0	CH ₂ Cl ₂	231		
S-S MeB BMe Me		54.2	CH ₂ Cl ₂	244	_	
Me Me N-N / MeB_BMe		39.3	CH ₂ Cl ₂	231, 244	_	
Ph Ph S BNEt ₂		43.8	CH₂Cl₂	207	¹³ C	207
Et_Et Et ₂ NB BNEt ₂			CDCl ₃	243	_	
Et NEt O	X = S Se	46.3 50.1	CDCl ₃ CDCl ₃	270 270	¹³ C, ¹⁴ N ¹³ C, ¹⁴ N, ⁷⁷ Se	270 270

TABLE~~18 $\delta^{11}B$ values of some trigonal boranes (BX3; X = halogen, O, S, Se, N) without B—C bonds.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
BF ₃	10.0	Methyl- cyclohexane	254	¹⁹ F	526, 766
BCl ₃	46.5	Methyl- cyclohexane	254	³⁵ Cl	335
BBr ₃	38.7	Methyl- cyclohexane	254		
BI ₃	-7.9	Methyl- cyclohexane	254	_	
B(OH) ₃	2.0–19.6	H ₂ O, pH- dependent	255, 472	¹⁷ O	350
B(OMe) ₃	18.3		107	¹⁷ O	350
$B(OtBu)_3$	15.6		5	17O	350
$B(OPh)_3$	16.5		5	_	220
$B[OC(CF_3)_3]_3$	13.4		5		
$B(OTeF_5)_3$	14.0	CFCl₃	5	_	
$B[ON(C_2H_5)_2]_3$	22.6		5		
$(MeOBO)_3$	17.3	C_6H_6	5	17O	350
$B(SMe)_3^a$	60.7	C_6H_6	5	_	330
SB-SMe	64.6	CH ₂ Cl ₂	5		
B(SeMe) ₃ ^a	65.5	CS ₂	5	(14N	128
B(NHMe) ₃	24.6		107	15 _N	690
$B(NMe_2)_2$	27.3		107	14N	128
B(N)	27.8	C_6H_6	152	$\left\{\begin{smallmatrix} ^{13}\mathrm{C} \\ ^{14}\mathrm{N} \end{smallmatrix}\right.$	779 152
$B[N(SCF_3)_2]_3$	36.2	CCl₃F	293	19 F	293
B(NHNMe ₂) ₃	23.1	C ₆ H ₆	130		
(iPr ₂ N) ₂ BN ₃ Me	29.0	C_6D_6	295	_	
B-NMe ₂	26.5	C ₆ H ₆	152	¹³ C	153
N-B NHtBu	26.0		297	¹³ C	297
$(2,4,6-tBu_3)C_6H_2B(NH_2)_2$	24.6		299		

TABLE~18~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX3; X = halogen, O, S, Se, N) without B—C bonds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me N B-N Me	26.4	CH ₂ Cl ₂	152	¹⁴ N	152
Me N B-N Me	24.6	-	296, 794	¹³ C, ¹⁴ N	296
Me B-N N Me	25.7	CDCl ₃	296	¹³ C, ¹⁴ N	296
Me NB-N Me [SO ₃ CF ₃]	27.0		290	¹³ C	290
Me N B-N ₃ Me	23.3	C_6D_6	295	_	
H N B-NMe ₂	25.2	CH ₂ Cl ₂	288	_	
N H H	22.1	C ₆ H ₆	289	¹³ C	349
iPr N B	26.5	C_6D_6	291	¹³ C	291
$Me_2(tBu)Si$ $N > B - N(SiMe_3)$ $Me_2(tBu)Si$)2 27.2	CH ₂ Cl ₂ /C ₆ D ₆	292	¹³ C, ¹⁴ N, ²⁹ Si	292

TABLE~18~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX3; X = halogen, O, S, Se, N) without B—C bonds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
$(N-B) \begin{pmatrix} tBu \\ N \\ tBu \end{pmatrix}$	36.8	CDCl ₃	294	¹³ C	294
$ \begin{array}{c} Me \\ N \\ N \\ N \\ Me \end{array} $ $ \begin{array}{c} Me \\ N \\ -CH_2 \\ -CH_2 \\ -N \\ - \end{array} $	-BN Me				
	27.0 27.4	C ₆ D ₆	298 794	¹³ C, ¹⁴ N ¹³ C	298 794
Me N Me N Me Me Me	22.4	C ₆ H ₆	300	¹³ C	300
$\begin{pmatrix} Me \\ N \\ B \\ Me \end{pmatrix}_{2} N-N \begin{pmatrix} Me \\ N \\ Me \end{pmatrix}_{2}$	26.3	CH ₂ Cl ₂	301	¹³ C	301
$ \begin{array}{c} Me \\ N \\ N \\ N \\ Me \end{array} $ $ \begin{array}{c} Me \\ N \\ Me \end{array} $	21.4	CDCl ₃	344	_	

^a Solid-state ¹¹B NMR techniques have been used to study phases in the systems B—S, B—Se, B—S—se and B—Te; there is no binary B—Te compound; there are B₂S₃, BS₂ and BSe₂ but no B₂Se₃; all these phases contain three-coordinate boron.⁷⁸⁹

TABLE~~19 $\delta^{11}B$ values of some trigonal boranes (BX2Y, BXY2, BXYZ; X = H, halogen, O, S, Se, N, P, As, Sb) without B—C bonds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
HBF ₂	22.0		5	19F	526, 766
HB(OMe) ₂	26.1	_	3		
ОВ-Н	28.1	CH ₂ Cl ₂	302		
ОВ-Н	29.9	C_6D_6	188	${13 \atop 17}$ C	188 117
SB-H	61.3	C ₆ H ₆	302		
H-B B-H	61.0	C_6D_6	154		
H ₂ BNMe ₂	37.9	Melt	127		
H ₂ BN(SiMe ₃)tBu	41.6	_	303		
$H_2BN(SiMe_3)_2$	46.7	_	303	-	
$HB(NMe_2)_2$	28.6	_	107		
HB[N(tBu)CH ₂ Ph] ₂	30.8	CH ₂ Cl ₂	304	13C	304
Мe					
B-H N Me	28.3		209	-	
Me N B N Me	20.9	_	316	-	
Me Me N-N H-B B-H Me	29.5	CH ₂ Cl ₂	318	-	
(HBNH) ₃	29.1	_	5	14N	699
(UDNMa)	31.7		217	$\int_{14}^{13} C$	153
(HBNMe) ₃	31.7	_	317	\ 14N	249
$ \begin{array}{c} NH-N = \\ H-B \\ NiPr_2 \end{array} $	27.6	C_6D_6	295	¹³ C	295

TABLE~19~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX₂Y, BXY₂, BXYZ; X = H, halogen, O, S, Se, N, P, As, Sb) without B—C bonds.

	A.S, 131	D) Without B.—C D	Ulius.		
Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
cp ₂ Zr B-N	21.5	C_6D_6	305	¹³ C	305
[Me ₂ NBH] ₂ O	29.0		306		
S N Me	37.0	ТНБ	652	_	
FB(OMe) ₂	15.6		307		
$[(2,6-Ph_2)C_6H_3]_2BF$	17.2		269	_	
Cl ₂ BOMe	31.9		107		
ClB(OMe) ₂	23.7		107		
O = X X = Cl	29.0	CDCl ₃	188	¹³ C	188
D DON'	26.9		204		
Br ₂ BOPh	27.3		204		
BrB(OEt) ₂	18.5		308	_	
Cl ₂ BSMe	51.8	_	127		
ClB(SMe) ₂	58.6	_	127	_	
$\binom{S}{S}$ B-CI	61.4	_	313	_	
S-S CI-B-S-B-CI	60.4	_	201		
Br ₂ BSH	49.8	CS ₂	314		
BrB(SH) ₂	56.2	CS ₂	314		
SB-Br	58.9	_	313		
SB-Br	51.5	CH₂Cl₂	200	¹³ C	200
S-S Br-B-S-B-Br	58.3	_	201	_	
I ₂ BSH	23.2	CS ₂	314	_	
IB(SH) ₂	50.0	CS ₂	314		
11)(011)2	50.0	CO ₂	314		

TABLE~19~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX₂Y, BXY₂, BXYZ; X = H, halogen, O, S, Se, N, P, As, Sb) without B—C bonds.

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
S _B -I	50.0		313		
S-S -B-S-B-1	49.0	_	201	_	
(MeO) ₂ BSMe	30.3	_	127	¹⁷ O	350
B-SSiMe ₃	29.7	CH ₂ Cl ₂	199	²⁹ Si	199
MeOB(SMe) ₂	45.8	_	127	¹⁷ O	350
Cl ₂ BSeH	56.7	CS ₂	315		
Br ₂ BSeH	50.5	CS ₂	315		
BrB(SeH) ₂	56.2	CS ₂	315		
I ₂ BSeH	23.0	CS ₂	315	_	
IB(SeH) ₂	50.0	CS ₂	315	_	
F ₂ BNEt ₂	17.2		127	19 _F	526, 766
$F_2BNHC_6H_2(2,4,5-tBu_3)$	16.8		299	19F	299
$F_2BN(SCF_3)_2$	18.0		5	_	
$(F_2B)_3N$	17.7	C_7H_8/C_6D_6	310	14N, 19F	310
$FB(NMe_2)_2$	21.8	—	107		210
Me	21.0		107		
_N.					
B-F Me	23.6	_	182	¹⁹ F	182
Me					
				("C	153
Cl ₂ BNMe ₂	30.8		107	{ 14N	128
				³⁵ Cl	335
Cl ₂ BNPh ₂	33.5	CCI ₄	129		
(Cl ₂ B) ₂ NtBu	38.4	CH ₂ Cl ₂	268	¹⁴ N	268
$(Cl_2B)_2NSiMe_3$	39.2	CH ₂ Cl ₂	268	¹⁴ N	268
$(Cl_2B)_3N$	40.0	CH ₂ Cl ₂ /C ₆ D ₆	310	14N	310
tBu					
Me₂Si N B−F	20.6	CH₂Cl₂	168	¹⁴ N	168
S N B-F Me Me	20.1	CH ₂ Cl ₂	168	¹⁴ N, ³¹ P	168

TABLE~19~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX2Y, BXY2, BXY2; X = H, halogen, O, S, Se, N, P, As, Sb) without B—C bonds.

Compound	l		δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
CIB(NMe ₂)2		27.9		107	$\begin{cases} {}^{13}C \\ {}^{14}N \\ {}^{35}Cl \end{cases}$	10 128 335
Me N B-Cl N Me			27.0	_	209	$\left\{ \begin{array}{l} {}^{13}{\rm C} \\ {}^{14}{\rm N} \\ {}^{35}{\rm Cl} \end{array} \right.$	273 152 335
(ClBNtBu) (XBNR) ₃) ₄ X	R	31.5	CH₂Cl₂	227	¹³ C, ¹⁴ N	227
	F	Me	24.3	C ₆ H ₆	249	$\begin{cases} {}^{13}C \\ {}^{14}N \\ {}^{13}C \end{cases}$	153 249
	Cl	Me	31.2	C_6H_6	249	14N	153 249
	Cl	OMe	31.7	CH ₂ Cl ₂	230	¹³ C, ¹⁴ N	230
	Br	Me	28.7	CH ₂ Cl ₂	249	$\left\{ \begin{smallmatrix} ^{13}\mathrm{C} \\ ^{14}\mathrm{N} \end{smallmatrix} \right.$	153 249
	MeO	Н	26.1	CH₂Cl₂	249	14N	249
	MeO	MeO	24.4	CH ₂ Cl ₂	230	¹³ C, ¹⁴ N	230
	MeS	Me	37.3	CH ₂ Cl ₂	249	$\left\{ ^{13}C^{14}N\right.$	153 249
Me ₃ Si Me ₃ Si Me ₃ Si		SiMe ₃ Cl B SiMe ₃ SiMe ₃	e ₃ 31.5	CH₂Cl₂	309	²⁹ Si	309
Br ₂ BNMe ₂	. Ci		25.7		107	$\left\{ \begin{smallmatrix} ^{13}\mathrm{C} \\ ^{14}\mathrm{N} \end{smallmatrix} \right.$	153 128
(Br ₂ B) ₂ Ntl	Bu		37.6	CH ₂ Cl ₂	268	14N	268
$(Br_2B)_3N$			37.1	CH ₂ Cl ₂ /C ₆ D ₆	310	14N	268
BrB(NMe	2)2		27.6	_	107	¹⁴ N	128
B-Bi	r		26.0	_	209	_	
			4.9		107	{ 13C	153
I ₂ BNMe ₂						1 **N!	128

TABLE~19~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX₂Y, BXY₂, BXYZ; X = H, halogen, O, S, Se, N, P, As, Sb) without B—C bonds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me N					
$\begin{bmatrix} \mathbf{N} \\ \mathbf{B} - \mathbf{I} \end{bmatrix}$	21.3		209	_	
Me					
ClB(OMe)NMe ₂	24.9	_	107	_	
CIB O-N NMe ₂	26.3	CH ₂ Cl ₂	229	¹³ C, ¹⁴ N	229
(MeO) ₂ BNMe ₂	21.3	_	107	${13 \choose 17}$	153
0				(13C	350 153
B-NMe ₂	24.7		152	$\begin{cases} {}^{13}C \\ {}^{14}N \\ {}^{17}O \end{cases}$	152
0				(-0	350
B-NMe ₂	25.6	CH ₂ Cl ₂	188	¹³ C	188
(M. NDO)	21.0	CTI CI	150	$\begin{cases} {}^{13}C \\ {}^{14}N \end{cases}$	153 152
(Me ₂ NBO) ₃	21.0	CH₂Cl₂	152	\[17O\]	350
NBO	21.9		438	¹³ C	438
$MeOB(NMe_2)_2$	25.1	_	107	¹⁷ O	350
Me N B-OMe N Me	24.1	C ₆ H ₆	152	¹⁴ N	152
OSO ₂ CF ₃					
N-B NHtBu	23.6	C ₆ D ₆	170	¹³ C	170
(MeS) ₂ BNMe ₂	43.4	_	127	¹³ C	153
SB-NMe ₂	46.3 45.9	CH₂Cl₂ CH₂Cl₂	152 311	¹⁴ N	152

TABLE~19~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX2Y, BXY2, BXY2; X = H, halogen, O, S, Se, N, P, As, Sb) without B—C bonds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
SB-NMe ₂	44.3	CH₂Cl₂	200, 311	¹³ C, ¹⁴ N	200
SB-NMe ₂	43.0	CH ₂ Cl ₂	188	¹³ C	188
$S-S$ Me_2N-B S NMe_2	46.1	C_6D_6	154	A	
$(Me_2NBS)_2$	36.4	_	258	¹³ C	258
$(Me_2NBS)_3$	39.2		258	¹³ C	258
$[(MeS)_2B]_3N$	54.4	C_6D_6	311	¹⁴ N	311
$\left(\begin{bmatrix} S \\ S \end{bmatrix} \right)_{3}^{N}$	56.3	CDCl ₃	311	¹³ C, ¹⁴ N	311
$\left(\begin{bmatrix} S \\ S \end{bmatrix} \right)_3 N$	52.6	CH ₂ Cl ₂	311	¹³ C, ¹⁴ N	311
$\left(\begin{array}{c} S \\ S \end{array}\right)_{3}$	50.5	CDCl ₃	311	¹³ C	311
MeSB(NMe ₂) ₂ Me	34.6		127	_	
B-SMe Me	31.2		152	¹⁴ N	152
$\begin{pmatrix} Me \\ N \\ B \\ Me \end{pmatrix} S$	30.5		258	¹³ C, ¹⁴ N	258
X					
X = O S Se	28.2 40.0 34.9	C_6D_6 C_6D_6 C_6D_6	312 312 312	¹³ C ¹³ C	312 312 312

TABLE~19~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX₂Y, BXY₂, BXYZ; X = H, halogen, O, S, Se, N, P, As, Sb) without B—C bonds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
N-B X $C=Y$					
X Y				13.00	
0 0	27.9	C_6D_6	312	¹³ C	312
S O	43.4	Hexane	312	¹³ C	312
S S	44.8	C_6D_6	312	¹³ C ¹³ C	312
Se Se	44.2	C_6D_6	312	C	312
N-B NHtBu	37.5		297	¹³ C	297
Me ₃ Si SiMe ₃ SiMe ₃ Bi Bi NEt ₂	34.9	CCI ₄	242	¹³ C, ²⁹ Si	242
Me N B-SeMe	31.7	C ₆ H ₆	182	⁷⁷ Se	182
Me (Me ₂ N) ₂ B—PEt ₂	36.4 36.1	C ₆ H ₆ C ₆ H ₆	320 152	³¹ P	320
(Me ₂ N) ₂ B—PPh ₂	41.3	C_6D_6	321,374	_	
$ \begin{array}{c} Me \\ N \\ B-EMe_2 \end{array} $ $E = P \\ As$	33.0 34.2	C ₆ H ₆ Hexane	182 322	³¹ P	182
Me Et ₂ NB(PEt ₂) ₂ tBu tBu	50.9	C ₆ H ₆	320	³¹ P	320
R ¹ R ² NB BNR ¹ R ²					
P-P tBu tBu R ¹ R ²					
Et Et	 46.6	Pentane	323	³¹ P	323
Me Bu	48.2	Pentane	323	³¹ P	323
Me C ₆ H		Pentane	323	³¹ P	323

TABLE~19~(cont.) $\delta^{11}B$ values of some trigonal boranes (BX₂Y, BXY₂, BXY₂; X = H, halogen, O, S, Se, N, P, As, Sb) without B—C bonds.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
tBu R¹R²N-B P tBu					
$R^1 R^2$					
Et Et	52.6	Hexane	323	¹³ C, ³¹ P	323
Me tBu	51.2	Hexane	323	¹³ C, ³¹ P	323
iPr iPr	50.7	Hexane	323	¹³ C, ³¹ P	323
Me Ph	60.6	Hexane	323	³¹ P	323
Ph Ph	59.5	Hexane	323	³¹ P	323
N-B P B-N CEt ₃	66.1		341	¹³ C, ³¹ P	341
Me ₂ N) ₂ B—AsEt ₂	38.0	C_6H_6	320		
t ₂ NB(AsEt ₂) ₂	55.5	C_6H_6	320		
$Me_2N)_2B-SbEt_2$	39.3	C ₆ H ₆	320		

TABLE 20 $\delta^{11} B \ \ values \ of some trigonal boranes (B—Si, B—Sn, B—Pb \ and \ B—Rh \ bonds, but \ \it without \ B—C \ bonds.$

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
F ₂ B—SiF ₃	28.0		325	19F	325
F ₂ B—Si ₂ F ₅	23.4		326	¹⁹ F	325
F ₂ B—Si ₃ F ₇	24.5		326	¹⁹ F	325
Cl ₂ B—SiCl ₃	63.0		325	_	
(MeO) ₂ B—SiMe ₃	34.5	C_6H_6	202, 329		
B-SiMe ₃	34.4	C ₆ H ₆	202, 329		
$\left(\left\langle \begin{array}{c} O \\ B \\ O \end{array} \right\rangle Si$	37.1		327	 -	

TABLE 20 (cont.) $\delta^{11}B$ values of some trigonal boranes (B—Si, B—Sn, B—Pb and B—Rh bonds, but without B-C bonds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
MeOB[Si(SiMe ₃) ₃] ₂	82.7		123, 329		
SB-SiMe ₃	72.8	C ₆ H ₆	202, 329		
(Me ₂ N) ₂ B—SiMe ₃	36.1		328	_	
$(Me_2N)_2B$ — $SiPh_3$	35.0		328	_	
(Me ₂ N) ₂ B—Si(SiMe ₃) ₃ Me N	38.8		123, 329	_	
B-SiMe ₃ Me	32.9	C ₆ H ₆	182	$\left\{ \begin{array}{l} {}^{13}\mathrm{C} \\ {}^{29}\mathrm{Si} \end{array} \right.$	71 182
Me ₂ N(Cl)BSiMe ₃	41.3	C_6H_6	202, 329		
Me ₂ N(MeO)BSiMe ₃	33.8	C_6H_6	202, 329		
Me₂N(MeS)BSiMe₃ Me	46.9	C_6H_6	202,329	_	
B-Si(Ph)(OtBu) ₂	33.1	CDCI ₃	330	_	
(Me ₂ N) ₂ B—Si(OtBu) ₃ Me	34.4	CDCl ₃	330		
$B-Si(OR)_3 R = iPr$	31.2	CDCl ₃	330	²⁹ Si	330
N tBu	30.9	CDCl ₃	330	²⁹ Si	330
$\begin{pmatrix} Me \\ N \\ B \\ Me \end{pmatrix}$ Si(OtBu) ₂	32.4	CDCl ₃	330	_	
Me ₂ N(iPrO)BSi(OiPr) ₃	32.4	CDCl ₃	330	²⁹ Si	330
Me ₂ NB(SiMe ₃) ₂	58.4	C ₆ H ₆	123,329	¹³ C, ¹⁴ N	123
$Me_2NB[Si(SiMe_3)_3]_2$	61.0		123, 329	¹³ C	329
(Me ₂ N) ₂ BSnMe ₃	39.0	C_6H_6	331,332	¹³ C, ¹¹⁹ Sn	133
Me	39.3	C_6D_6	133		
B-SnMe ₃ Me	36.5	C_6D_6	133	¹³ C, ¹¹⁹ Sn	133
Me NB-SnMe ₃	34.6		214	-	

 ${\it TABLE~20~(cont.)}$ $\delta^{11}{\it B}$ values of some trigonal boranes (B—Si, B—Sn, B—Pb and B—Rh bonds, but without B—C bonds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me ₂ N(Cl)BSnMe ₃	44.4	C ₆ H ₆	332,333	¹¹⁹ Sn	332
Et ₂ N(Cl)BSnMe ₃	45.2	•	333	_	
Me ₂ N(MeO)BSnMe ₃	37.4	C_6H_6	182	¹¹⁹ Sn	182
Me ₂ N(MeS)BSnMe ₃	<i>5</i> 8.5	C ₆ H ₆	182	¹¹⁹ Sn	182
$Me_2NB(SnMe_3)_2$	63.9	C_6H_6	133, 182, 333	¹³ C, ¹¹⁹ Sn	133
Et ₂ NB(SnMe ₃) ₂ Me	63.0	THF	333	_	
NB-PbMe ₃ Me	41.7	C ₆ H ₆	334	²⁰⁷ Pb	334
O H B-Rh(PPh ₃) ₂	37.7	CD ₂ Cl ₂	367	_	

 ${\bf TABLE~21}$ $\delta^{11}{\bf B}$ values of some compounds with B—B bonds. s,b,c

Compound		$\delta^{11}B$	Solvent	Ref.	Other nuclei	Ref.
Et ₄ B ₂		105.5	Pentane	164		
iPr ₄ B ₂		104.7	Pentane	164	13C	164
tBu ₂ B-B(Me)tBu		103.0		164	13C	164
[tBu(neopent)B] ₂		104.0		165		
[Me(Cl)B] ₂		91.0		351	_	
$[tBu(X)B]_2$	X = CI	84.3	CDCl ₃	166		
• • • • • •	Br	88.0	CDCl ₃	166		
	I	89.4	CDCl ₃	352		
[tBu(MeO)B] ₂		63.7	CDCl ₃	166		
[tBu(MeS)B] ₂		87.5	CDCl ₃	352		
$[Me(Me_2N)B]_2$		51.1		107		
[tBu(Me ₂ N)B] ₂		54.8	CDCl ₃	133	13C	133
[Ph(Me ₂ N)B] ₂		49.1	CDCl ₃	348	¹³ C	348
B NMe ₂		51.0	CDCl ₃	354	¹³ C	354

 ${\it TABLE~21~(cont.)}$ $\delta^{11}{\it B}$ values of some compounds with B—B bonds. ^a,b,c

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
$2Li^{+}\left(\begin{array}{c} B \\ B \\ NMe_{2} \end{array} \right)^{2^{-}}$	37.0	ТНБ	354	¹³ C	354
NiPr ₂					
NiPr,	46.5		59	¹³ C	59
CH ₂ [B(NMe ₂)B(NMe ₂] ₂ CH	I ₂ 53 6		697	_	
$tBu_2B-B(tBu)SiMe_3$	102.0(BC ₂) 126.9(BSi)	C_6D_6	350		
tBu₄B₄	135.1		353		
$\mathrm{Et_2}(\mathrm{Cl_2})\mathrm{B_4}$	125.0(BEt) 94.9(BCl)		353		
Et(Cl ₃)B ₄	120.0(BEt) 89.6(BCl)		353	_	
$1-BCl_2-B_5H_8$	74.8(BCl ₂)		363	11B	363
2-BCl ₂ —B ₅ H ₈	75.7(BCl ₂)		364	11B	364
$B_2X_4 X = F$	23.0		326		
Cl	62.5		355	35Cl	335
Br	69.6	C_7H_8	356		
I I	67.0		349	¹⁷ O	250
(MeO)₄B₂	30.5		107	0	350
В-В	31.5	CH ₂ Cl ₂	357		
(corrected structure!)					
\.0 0./					
+0 $B-B$ 0 $+$	30.4	CDCl ₃	358	¹³ C	358
O B B O O	30.7	CH ₂ Cl ₂	357		
(corrected structure!)					
Çı Çı					
$ \begin{array}{c} B-B' \\ O \end{array} $	30.8	CHCl₃	357	_	
$\begin{bmatrix} S \\ B - B \end{bmatrix}$	68.3	CH ₂ Cl ₂	357	_	
(corrected structure!)					

 ${\bf TABLE~21~(cont.)}$ $\delta^{11}{\bf B}$ values of some compounds with B—B bonds. ^a,b,c}

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
SB-BSD	58.6	CH₂Cl₂	188	¹³ C	188
CI CI B-B S S	67.8	Diglyme	357	_	
$(Me_2N)_4B_2$	36.6	_	107	¹³ C ¹⁴ N	362 152
$ \begin{array}{c} R \\ N \\ R \end{array} $ $ \begin{array}{c} R = Me \\ iPr \end{array} $	33.7 31.1	CH₂Cl₂ CD₂Cl₂	357 361	¹³ C	360
(corrected structure! 359,361)	39.9	CD₂Cl₂	167	¹³ C	167
B-B N tBu		22.2		-	10.
N (a) (b) NiPr ₂ N B-B NiPr ₂ N tBu	36.0(a) 30.8(b)	C_6D_6	167	¹³ C	167
[Me ₂ N(Cl)B] ₂	37.5	CH ₂ Cl ₂	362	13C	362
(a) (b) Cl Cl ₂ B-B Me ₂ N NMe	5.6(a) 41.6(b)		365		
[Me ₂ N(MeO)B] ₂	34.5		107	¹⁴ N ¹⁷ O	152 350
[Me ₂ N(MeS)B] ₂	47.7	CH₂Cl₂	362	¹³ C ¹³ C	362
Me ₂ N NMe ₂ B-B	43.7 43.3	CH ₂ Cl ₂ CDCl ₃	357 362	¹³ C	362

TABLE 21 (cont.) δ^{11} B values of some compounds with B—B bonds. **, b, c

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
Et ₂ N NEt ₂ B-B S	41.1	CH₂Cl₂	362	¹³ C	362
Me ₂ N NMe ₂ B-B S Si S Me ₂	45.1	CH₂Cl₂	366	_	
Me ₂ N NMe ₂ S S S B-B Me ₂ N NMe ₂	44.3	CH₂Cl₂	366	_	
$\begin{bmatrix} S_{\text{(a)}}^{\text{(a)}} & \text{(b)} \\ B - B(\text{NMe}_2)_2 \end{bmatrix}$	60.1(a) 33.7(b)	CH ₂ Cl ₂	362	¹³ C	362
$\begin{bmatrix} S_{(a)}^{(a)} & (b) \\ B - B(Cl) NMe_2 \end{bmatrix}$	56.7(a) 38.7(b)	CH₂Cl₂	362	¹³ C	362
[Me ₂ N(Me ₃ Si)B] ₂ (a) (b) (Ma, N), B. B[Si(O4Ba), IND	59.5	C_6D_6	133	¹³ C, ¹⁴ N	133
(Me ₂ N) ₂ B—B[Si(OtBu) ₃]NN	38.0(a) 56.1(b)	CH ₂ Cl ₂	330	¹³ C	330
$\begin{aligned} [Me_2N(Me_3Ge)B]_2 \\ [Me_2N(Me_3Sn)B]_2 \end{aligned}$	59.8 59.4	C_6H_6 C_7D_8	202 133	 13C, 14N, 119Sn	133
(Me ₂ NB) ₆ Me ₃ N—BH ₂ —BH ₂ —NMe ₃ Me ₃ N—BH ₂ —BH ₂ —PMe ₃	65.0 -3.5 -2.9(BN) -37.0(BP)	C ₇ D ₈	370 706 706	13°C	370

^a For further ¹¹B NMR data see Refs 5 and 7; for ¹¹B NMR data of boron subhalides see

^b For ¹¹B NMR data of closo-halogenohydrohexaborates $[X_n B_6 H_{6-n}]^{2-}$ (n = 0, ..., 6;

X = Cl, Br, I) see Ref. 818. See Ref. 830 for ¹¹B, ¹³C NMR data of diaza-*nido*-hexaboranes and for tri-tert-butyl-azadiboridine: $\delta^{11}B$: 51.9 in CDCl₃.

B—C σ orbitals and reduces the amount of B_0 -induced mixing of the σ and π states; this reduces σ_p and therefore increases the shielding; (iii) contributions from the anisotropy of the C=C triple bond may enhance the shielding effect observed for B-alkenyl groups. The arguments (i) and (ii) point in the same direction and emphasize that σ and π effects are difficult to separate. The influence of π effects is evident in particular when in cyclic systems the coplanarity of the boron p_z orbital and the C=C π system is enforced; for example

Me-B
$$B \leftarrow B$$
 $B \leftarrow B$ $B \leftarrow B$

The comparison of δ^{11} B values for 3-borolenes and 2-borolenes is also very instructive in this respect:³⁴⁵

B-R

Me Ph

Me Ph

$$\delta^{11}B = 95.0 \quad 87.0 \quad 81.0 \quad 73.9$$

The $\delta^{11}B$ values of bora-2,5-cyclohexadienes cover a remarkably large range for various substituents at the 1-6 positions and heteroatoms in the 4-position:

	δ^{11} B	RB	R(2)	R(3)	E	R(5)	R(6)
	52.8 ⁶⁴	Me	Н	н	CH ₂	Н	Н
R R	58.3 ⁶⁰	Me	Н	Н	CMe ₂	Н	Н
`` _ _(``	60.965,66	Me	H	H	SnMe ₂	Н	Н
R-B E	61.0^{65}	Me	Н	Me	SnMe ₂	Me	Н
``\ <u>\$_</u> 4	61.9^{65}	tBu	H	Me	SnMe ₂	Me	Н
R R	70.1111	Et	Et	Me	SnMe ₂	Me	Et
•• ••	73.1 ¹¹¹	iPr	iPr	Me	SnMe ₂	Me	iPr
	57.2 ¹¹²	tBu	H	Me	PPh	Me	Н
	66.8 ¹¹³	Bu	H	Ph	S	Ph	Н

This range can be attributed to the structural flexibility of the six-membered ring system, which may adopt a planar, a twisted, a chair or a half-chair conformation, as has been found by dynamic ¹H and ¹³C NMR. ⁴¹

The variety of triorganylboranes with BC(pp) π interactions has been enlarged by ylides with a P=C-B unit. 519

(b) Diorganylboranes, R_2BX (X = H, halogen, OR', SR', SeR', NR'_2 , PR'_2 , SiR'_3 (Tables 8–12). The $\delta^{11}B$ values of diorganoboranes are determined primarily by the nature of the third substituent X. Tables 8-12 list δ^{11} B values of representative compounds. In general, different organyl groups R exert a similar influence on ¹¹B nuclear shielding as in triorganoboranes. The following two exceptions are noteworthy: (i) If $B-X(pp)\pi$ bonding is of importance (e.g. $X = NR_2$) then the steric requirements of R (and also of R') may be crucial; (ii) if X is a heavy halogen atom (I, Br) then the bulkiness of R appears to have a more significant effect than in triorganoboranes. On the other hand, various functionalities of the ligand X have a remarkable influence on ¹¹B nuclear shielding. In many cases it is possible to prove the influence of steric or electronic effects. Both effects are of great importance if $B-X(pp)\pi$ bonding is involved, and if there is a functionality in the ligand X, competing for the π -electron density. Instructive examples of these effects are found in N-azolyldiorganylboranes and in bis(diorganylboryl)amines:

$$Me_{2}B-NMe_{2} \qquad Me_{2}B-N \qquad S8.5^{152}$$

$$49.9^{143} \qquad 67.0^{143} \qquad 73.6^{143} \qquad T8u_{2}B-N \qquad T8u_{2$$

The bulky tBu groups induce on average a nonplanar arrangement of the C_2B and the NC_2 planes in the *N*-azolylboranes. ¹⁴³ The reduced $BN(pp)\pi$ bonding in azolylboranes is a function (i) of the electronic structure of the heteroaromatic π system and (ii) of the twisting of the azolyl group against the C_2BN plane. ^{143,152}

If the boryl groups in diborylamines do not prefer a distinct orientation then the nitrogen π -electron density is evenly spread between the two boron atoms, shown by the reduced ¹¹B-nuclear shielding (see also Table 12) as compared with other aminodiorganylboranes. However, if the steric, requirements of the two boryl groups are sufficiently different then the BC₂ plane of the more bulky group is twisted against the C₂BN plane of the remaining part of the molecule. ²⁵⁹ Thus there is efficient BN(pp) π bonding in one part of the BNB system and negligible BN(pp) π bonding in the other part, as indicated by the shift of the ¹¹B resonances to lower and higher frequencies respectively. ^{137,259}

¹¹B NMR is an extremely sensitive tool for studying association phenomena in solution. Examples are acyloxydiorganylboranes¹⁶⁰, 1,1-bis(diorganylboryl)hydrazines¹⁶¹ and phosphorylaminodiorganyl boranes. ^{149,168} In the latter case the presence of two signals in the typical range for three-coordinate boron suggests that there are two isomeric structures:

$$O$$
 $C - tBu$
 $Et_2B - O$
 BMe_2
 BMe_2
 BMe_2
 $\delta^{11}B = 38.0 (20 °C) 54.6 (84 °C) 23.0$
(compare with data in Table 12)

Most phosphino- or arsinodiorganyl boranes that have been studied by ¹¹B NMR prove to be associated (dimer or trimer) rather than monomeric in solution. ^{172,173}

Bulky groups at phosphorus help to stabilize monomer species. At $105\,^{\circ}\text{C}$ the equilibrium is shifted completely from the dimer to the monomer: 171

$$Me_2B - PtBu_2 \implies \frac{1}{2}(Me_2P - PtBu_2)_2$$
 (11)
 $\delta^{11}B(105 ^{\circ}C) = +85$ -3.4

Bulky groups on the boron atom help to stabilize an anionic species for which both ¹¹B NMR data and the results of the X-ray analysis indicate a

certain amount of PB(pp) π interactions:³⁴⁶

$$\delta^{11}B^{346} = 64.0$$

In spite of the wealth of $\delta^{11}B$ data available, in particular for trigonal boranes,^{5,7} there remain numerous problems in the interpretation of $\delta^{11}B$ data. The following three examples are given. Changes in the screening anisotropy due to the ring size and/or the electron delocalization in the heteroaromatic π system of borirenes are responsible for the increase in ¹¹B nuclear shielding. There is also a highly shielded ¹¹B nucleus in an 1-aza-2-bora-4-titanacyclobutane derivative, ¹⁴⁷ indicating the influence of the spatial proximity between boron and titanium.

B-N(SiMe₃)₂
$$cp_2Ti-CH_2 \\ tBuN-BtBu$$
$$\delta^{11}B \approx +25.0^{150}$$

$$22.5^{147}$$
 (compare with data in Table 12)

The δ^{11} B values for products derived from 1,2-diboration of alkynes show a remarkably large range, depending on the other groups attached to the C=C double bond: 163

The influence of the alkyl substituents R_1 and R_2 on ^{11}B is clearly not in accord with steric effects frequently found in the case of alkenylboranes (see Table 4).

Stable triphenylsilylorganyl boranes of the type $R_nB(SiPh_3)_{3-n}$ (n=0,1) have been reported. However, no convincing proof for their structure has been given. In the light of the problems involved in the synthesis of

trialkylsilyldiorganylboranes, ¹²³ their existence must be questioned, as is the case for various stannylboranes. ¹⁷⁶ So far, only a few silyldiorganylboranes have been fully characterized, including those involving ¹¹B NMR spectroscopy: ¹²³

$$Me_2B-Si(SiMe_3)_3$$
 $tBu_2B-Si(SiMe_3)_3$ $B-Si(SiMe_3)_3$ $\delta^{11}B = 108.6$ 107.3 109.8

The ¹¹B-nuclear shielding is reduced by approx. 20 ppm with respect to trialkylboranes. This can be ascribed to the higher energy of the electrons in the B—Si σ bond as compared with the B—C σ bond. Similar arguments apply to other trigonal boranes with a B—Si, B—Sn, B—Pb or a B—B bond (see below).

(c) Monoorganyl boranes, $RBX_2(X = H, halogen, OR', SR', SeR', NR'_2, PR'_2)$. In general, all effects discussed for $\delta^{11}B$ values of the diorganyl-boranes R_2BX (see above) are also found in the case of monoorganylboranes RBX_2 . The heavy-atom effects are amplified in the case of RBX_2 (X = Br, I), whereas substituent-induced changes in the π -electron density at the boron atom are less evident in the presence of two ligands X suitable for $B-X(pp)\pi$ bonding. A great variety of cyclic and noncyclic compounds have been studied by ^{11}B NMR. 5,7 This brief discussion is limited to $\delta^{11}B$ values of some new compounds. $\delta^{11}B$ data for representative compounds are listed in Tables 13–17.

With the exception of the oxygen derivative, there is a considerable increase in the ¹¹B nuclear shielding of the five-membered heterocycles when a C=C double bond is in the 4,5-position (Δ^{11} B values with respect to the saturated heterocycles in parentheses):

Therefore in the case of the sulphur²⁰⁰ and nitrogen compounds this is in agreement with an increase in electron-density delocalization, as suggested for the nitrogen compounds on the basis of photoelectron spectroscopy and MO calculations.²⁵³

The development of the chemistry of iminoboranes^{49,52,53} is related to the oligomerization of these reactive compounds. In the course of these studies, borazines with Dewar-benzene-like structures have been detected:^{228,248}

tBu iPr
iPr-B-N-B-iPr tBu-B-N-B-tBu
tBu-N-B-N-tBu iPr-N-B-N-iPr
iPr tBu-B-N-B-tBu
iPr-N-B-N-iPr
tBu
$$\delta^{11}B = 31.1 \text{ (CDCl}_3)$$

$$\delta^{12}B = 31.1 \text{ (CDCl}_3)$$

$$\delta^{13}P = 31.1 \text{ (CDCl}_3)$$

$$\delta^{14}P = 31.1 \text{ (CDCl}_3)$$

$$\delta^{15}P = 31.1 \text{ (CDCl}_3)$$

$$\delta^{15}P = 31.1 \text{ (CDCl}_3)$$

$$\delta^{16}P = 31.1 \text{ (CDCl}_3)$$

$$\delta^{17}P = 31.1 \text{ (CDCl}_3)$$

There is also an example for strong intramolecular S-B coordination as indicated by ¹¹B NMR and X-ray analysis: ³⁴⁷

Weak intramolecular association appears to determine the $\delta^{11}B$ values in some aminosilane derivatives, as is evident by comparison with the $\delta^{11}B$ value of the corresponding chlorosilane derivative:

In the presence of a B—F bond the influence of steric strain on the δ^{11} B values of aminoboranes is much reduced. This may be ascribed to the increased polarization of the σ -bonding framework. Typical examples have been reported for the tmp (tmp = 2,2,6,6-tetramethylpiperidino) and the

9-fluorenyl ligands: 368

$$h$$

Me-B

NMe

 $\delta^{11}B = 33.9^{368}$
 31.6^{127}

High-field ¹¹B NMR is extremely useful, even in the study of trigonal boranes. Thus the resolution of broad overlapping resonances supports the structural assignment, as shown in the case of various heterocycles:³⁷³

Me H B N
$$\delta^{11}$$
B (CS₂) = 33.7 (a), 48.7 (b)

The dimerization of the four-membered diazadiboretidines to the eight-membered octahydrotetrazatetraborocines is a reversible process and can be studied by ¹¹B NMR:^{227,252}

The addition of Lewis acids to bis(amino)boranes (cyclic and noncyclic) has been another interesting subject of recent ¹¹B NMR studies: ^{148,245,246,251}

The rearrangement of a 1,2-dihydro-1,2-diborete into a 1,3-dihydro-1,3-diborete has been studied by ¹¹B NMR. The increase in ¹¹B-nuclear

shielding is paralleled by the change in the δ^{13} C value:⁵⁹

(d) Boranes, BX_3 , BX_2Y , BXY_2 , BXYZ (Tables 18–20). The influence of the substituents X, Y and Z on $\delta^{11}B$ is analogous to that described for diorganyl- and monoorganyl boranes. The heavy-atom effect for X = I, e.g. in BI_3 ($\delta^{11}B = -7.1^{107}$) is more pronounced. The $\delta^{11}B$ value for BF_3 ($\delta^{11}B = 10.0$) should not be taken as evidence for efficient $BF(pp)\pi$ bonding, but rather should be attributed to significant stabilization of σ versus π orbitals. Of course, the latter effect has to be considered for all trigonal boranes, but its influence on $\delta^{11}B$ easily gets confused with $BX(pp)\pi$ bonding, in particular in the case of the compounds discussed in this section. Thus the comparison of the $\delta^{11}B$ values for the following boron nitrogen compounds is very instructive. For electronic and for steric reasons, $BN(pp)\pi$ interactions should be negligible in the 2,5-dimethylpyrrole derivative. In spite of this, the $\delta^{11}B$ value lies close to the "normal" range of $\delta^{11}B$ values for tris(amino)boranes ($\delta^{11}B = 22-30$ ppm):

$$B(NMe_2)_3$$
 $B(N)_3$ $B(N)_3$ $B(N)_3$ $B(N)_3$ $B(N)_3$

On the other hand, electropositive substituents should induce a destabilization of σ orbitals versus π orbitals, and therefore they cause a reduced magnetic shielding of the ¹¹B nuclei. This is readily seen in the case of many silyl-, stannyl- or plumbylboranes (Table 20); for example

(e) Diboranes(4) (Table 21). The ¹¹B-nuclear shielding in diborane(4) derivatives is controlled by the same effects as in other trigonal boranes. In

most diborane(4) compounds, the presence of the B—B bond is reflected by reduced ¹¹B-shielding (approx. 5–20 ppm) with respect to that in the corresponding organylboranes; for example

tBu OMe tBu Et Et Et Et MeO tBu tBu Et Et Et Et
$$B-Et$$
 $B-Et$ $B-Et$ $A = 63.7^{166}$ $B = 63.7^{166}$

As in silyl-, stannyl- or plumbylboranes, this may be attributed to the electropositive character of the boryl group, which destabilizes the σ -bonding framework. Exceptions are B_2F_4 , B_2Cl_4 and $B_2(OR)_4$ (in comparison with RBF₂, RBCl₂, RB(OR)₂; R = alkyl), where electronegative ligands enhance the group electronegativity of the boryl group. In any case, a direct comparison of $\delta^{11}B$ values of diborane(4) and borane(3) derivatives is somewhat hampered owing to the unknown magnitude of the mutual " β -effect" exerted by the substituents at the two boron atoms in diborane(4) compounds.

¹¹B NMR is extremely useful in the investigation of the rich chemistry of diborane(4) compounds. Thus it proves that adduct formation takes place instead of exchange reactions:³⁶⁰

¹¹B NMR shows the product distribution that arises from the following reaction: ³⁶²

The existence of diborane(4) compounds with different coordination numbers is clearly demonstrated by ¹¹B NMR:³⁶⁵

Similarly, ¹¹B NMR is used to show the presence of unstable diborane(4) derivatives, like B₂Et₄. ¹⁶⁴ Of course, it may also be used to study the decomposition of such species, and also other reactions that proceed via B—B bond cleavage. ¹⁶³

3. Tetracoordinate boron and boron with coordination number ≥ 4

The increase in nuclear shielding observed for tetracoordinate boron atoms with respect to three-coordinate boron is predicted by theory. This finding is also in agreement with δ^{13} C or δ^{15} N data for tetracoordinate carbon or nitrogen atoms respectively. The δ^{11} B values cover the range between approximately +40 and -130 ppm, and there is no relationship between δ^{11} B values and the formal charge of the molecule (e.g. neutral in Lewisbase-borane adducts, cationic in boron(1+) compounds and anionic in borates). The δ^{11} B values are determined by substituent effects in a similar way as known for δ^{13} C values of substituted alkanes. Additional effects are observed in the case of transition-metal hydroborates, where the nature of the M—H—B bridge has to be taken into account. Finally, there are many borane-metal π complexes for which δ^{11} B NMR has been used to prove the presence of metal-boron bonding interactions.

(a) Diboranes(6) and μ -diboranes. The ¹¹B nuclear shielding in diboranes(6) depends greatly upon the nature and the number of substituents. There are extensive lists of data provided in Refs. 5, 7 (for μ -diboranes see also Ref. 832), and discussions can be found in Ref. 662.

	(a) (b)		
	$H_2BH_2BH_2$	Me(H)BH ₂ BH ₂	Me(H)BH ₂ B(H)Me
δ^{11} B(a)	17.7	26.7	21.9
$\delta^{11}B(b)$	17.7	8.8	21.9
	Me ₂ BH ₂ BH ₂	Me ₂ BH ₂ B(H)Me	$Me_2BH_2BMe_2$
$\delta^{11}B(a)$	38.8	31.7	25.0
$\delta^{11}B(b)$	4.4	15.5	25.0

(Continued p. 148)

 ${\it TABLE~22}$ $\delta^{\rm 11}{\it B}$ values of some representative Lewis-base-organylborane adducts. a,b,c

Compound		δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Base—BR ₃ Base	R					
$\overline{\Diamond}$	Me	+18	THF, -50°C	41	_	
NH ₃	Me	-8.7	CH ₂ Cl ₂	474	14N	474
Pyridine	Me	0.0	CH_2Cl_2	474	¹⁴ N	474
1-Me	Me	-5.2	CH ₂ Cl ₂	474	$\begin{cases} {}^{14}N \\ {}^{13}C {}^{15}N \end{cases}$	474
imidazole PMe ₃	Me	-12.3		478	³¹ P	476 478
0	Et	+25.7	THF, −55 °C	475	_	
NH ₃	Et	-3.1	_	474	¹⁴ N	474
Pyridine	Et	2.2	Et ₂ O	474	¹⁴ N	474
NH ₃	tBu	-2.5	CH ₂ Cl ₂	477	13C	477
NH ₃	CH=CH ₂	-9.5		69	13C	69
NMe ₃	CH=CH ₂	-3.0		69	13C	69
PMe ₃	CH=CH ₂	-17.5		69	13C	69
		$(J(PB) = 4^{\circ}$	7.0)			
Base—1-bore Base	adamantane					
OEt ₂	_	15.6		480		
$\circ \bigcirc$		-8.0		482		
Pyridine		-4.1		480	¹³ C	479
PhC≡N		-9.1	CCl ₄	481		
Base—C ₈ H ₁₄	₄ <i>B—Rª</i> R					
Pyridine	Et	1.4	CDCl ₃	47	¹³ C	47
$\circ \bigcirc$	Н	14.0	THF	483		
Me ₂ S	Н	3.9	Me ₂ S	484	_	
Pyridine	H	-0.7	CDCl ₃	47	¹³ C	47
Pyridine-Bl	Ph₃	3.9		485	13C	486

 ${\it TABLE~22~(cont.)}$ $\delta^{11}{\it B}$ values of some representative Lewis-base—organylborane adducts. ^a,b,c

Compound	$\delta^{11}B$	Solvent	Ref.	Other nuclei	Ref.
H Me NMe ₂ BPh ₂	6.4	CDCl ₃	489	_	
BEt ₂ Me	25.0		487	_	
Me Et Me ₂ Si O BEt ₂ Me	21.2	Neohexane	5	-	
Me Et Me ₂ Sn BEt ₂ SnMe ₃	9.6	C_6D_6	488	¹³ C, ¹¹⁹ Sn	488
PhB O BEt ₂ (a) (b) Me	46.4(a) 25.3(b)	CH ₂ Cl ₂	31	_	
Me Et N BEt ₂ Me ₂	7.0		491		
$Me Et$ $Me_2Sn_{H_2}$ H_2	-0.7	C_6D_6	492	¹³ C, ¹⁵ N, ¹¹⁹ Sn	492
Me ₃ N-BH HB-NMe ₃	2.0 (88.0)	1,4-Dioxane	494	_	
$[H_2N(CH_2)_2NH_2][(c-C_6H_{11})]$	₂ BH] ₂ -1.6		497		

TABLE 22 (cont.) δ^{11} B values of some representative Lewis-base-organylborane adducts. **. **A, c**

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
MeS BH ₂ SMe					
Me(equatorial)	-13.6 (105)	CDCl ₃	493	¹³ C	493
Me(axial)	-17.2 (105)	CDCl ₃	493	¹³ C	
Me ₃ N—BH ₂ tBu Me ₃ N—BH ₂ (CH ₂) ₄ BH ₂ —	3.1 -NMe ₃		495		
	-1.1 (95.0)	C_6D_6	496	¹³ C	496
$[Me_2N(CH_2)_2NMe_2][CHN]$	Me ₂ CMe ₂ BH ₂] _n			
n = 1	-1.4	CDCl ₃	498		
n=2	-0.8	CDCl ₃	498		
Me ₃ N—BH ₂ CH ₂ SMe	-3.9 (99.0)	CDCl ₃	496	¹³ C	496
Me₃N—BH₂CN	-14.9 (108.0)		499		

TABLE 23 $\delta^{11}B$ values of some Lewis-base organylborane (R₂BX and RBX₂) adducts.

Compound		δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
THF—CIBC ₈ H ₁₄		17.8	THF	793	_	
Et ₂ O-CMe ₂ HCN	4e₂B(H)Cl	17.7		588		
		(J(BH) = 145.0	0)			
Me ₂ S-XBC ₈ H ₁₄	X = Cl	18.5	CDCl ₃	589	_	
	Br	12.8	CDCl ₃	589	_	
	I	12.4	CDCl ₃	589		
Me ₂ S—2,6-Cl,Cl-2 diboraadamanta	,	13.9		589		
Me ₂ S—BPhX ₂	X = CI	9.1		590	_	
	Br	2.1		590		
	I	-17.6		590		

 $[^]a$ C₈H₁₄B = 9-borabicyclo[3.3.1]nonyl. b ¹¹B NMR data for Me_nNH_{3-n}—H₂B—C(O)OR are given in Ref. 819. c ¹J(¹¹B¹H) values in parentheses.

TABLE~23~(cont.) $\delta^{11}B$ values of some Lewis-base organylborane (R2BX and RBX2) adducts.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Me ₂ S—BRBr ₂					
R = (3Z)-3-hexen-3-yl	-3.3	CDCl ₃	591	_	
(1E)-1-hexen-1-yl	-0.9	CCl₄	591	_	
(1E)-3,3-dimethyl-	0.3	CCl₄	591		
1-buten-1-yl					
(2Z)-4-methyl-	-3.6	CCl ₄	591	_	
2-penten-2-yl					
(1 <i>E</i>)-5-chloro-	-2.0	CCl ₄	591	_	
1-penten-1-yl					
Me_2S — $CMe_2HCMe_2B(H)Cl$	8.9		588		
	(J(BH) = 120.0)				
Me ₃ N—BEt ₂ F	10.1		594	_	
	(J(FB) = 67.0)				
Me ₃ N—BEtF ₂	6.7		107	_	
	(J(FB) = 65.0)				
Me ₃ N—BEtCl ₂	12.4	CHCl ₃	107		
Pyridine—ClBC ₈ H ₁₄ ^a	9.5	CDCl ₃	47	13C	47
Pyridine—BMe ₂ Br	6.5	C_7H_8	5	_	
Pyridine—BMeBr ₂	2.8	C_7H_8	5	_	
Me ₃ P—BEt ₂ F	7.5	CH_2Cl_2	478		
Me ₃ P—BBuF ₂	9.5	CH_2Cl_2	478	_	

 $^{^{}a}$ C₈H₁₄B = 9-borabicyclo[3.3.1]nonyl.

 ${\bf TABLE~24}$ $\delta^{11}{\bf B}$ values of some Lewis-base-borane (BH3) adducts. b

Compound	$\delta^{11} \mathrm{B}$	Solvent	Ref.	Other nuclei	Ref.
Me ₂ O—BH ₃	2.5(106.0)	Me ₂ O	557	_	
О-ВН3	-0.7(103.0)	THF	557	_	
Me ₂ S—BH ₃	-20.1(104.0)	$\mathrm{CH_2Cl_2}$	557	_	
S-BH ₃	-20.1(104.0)	CH ₂ Cl ₂	557	-	
H ₃ N—BH ₃	-22.3(98.2)	Monoglyme	474	$\begin{cases} {}^{14}N \\ {}^{15}N \end{cases}$	474 556
MeH ₂ N—BH ₃	-19.1(92.0)	Monoglyme	474	14N	474

 ${\bf TABLE~24~(cont.)}$ $\delta^{11}{\bf B}$ values of some Lewis-base-borane (BH3) adducts. b

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Me ₂ HN—BH ₃ Me ₃ N—BH ₃	-13.5(94.0) -8.3(98.0)	Monoglyme Monoglyme	474 474	¹⁴ N ¹⁴ N	474 474
Et ₃ N—BH ₃	-13.5(97.3)	_	474	${14 \choose 15}$ N	474 556
Me N BH ₃	-16.0	CDCl ₃	561	¹³ C	561,562
$R = H$ BH_3 $R = H$ Bu	-17.0(98.0) -12.1(99.0)	THF THF	652 652	<u>-</u> -	
Me ₂ N-(CH ₂) ₂ -O-C(O)! BH ₃	Me -9.0(98.0)	CDCl ₃	563	_	
Pyridine—BH ₃ 2-NH ₂ —pyridine—BH ₃	-11.8(98.0) -17.0(90.0)	CH ₂ Cl ₂ CHCl ₃	474 558	14N —	474
H ₃ B-NN-BH ₃	-13.2(N(1)B) -11.7(N(4)B)	C_6D_6	559	_	
$2,3,5,6-Me_4-$ pyrazine—(BH ₃) ₂	-17.3	C_6D_6	560		
$BH_3 R = H$	-19.2 -19.0(91.0)	CH ₂ Cl ₂ Monoglyme	474 564	¹⁴ N	474
Me N Me₃Si	-18.8(95.1) -19.6(91.5)	CH ₂ Cl ₂ CH ₂ Cl ₂	474 474	¹⁴ N ¹⁴ N	474 474
S BH ₃	-17.1(91.0)	THF	652		
H_3P — BH_3	-42.5(103.0) ($J(PB) = 27.0$)		565	³¹ P	566
Me ₃ P—BH ₃	-36.8(94.6) $(J(PB) = 64.3)$	CH₃CN	568		
H ₃ B BH ₃ Me ₂ P PMe ₂	-23.0(109.0) (exchange?)	CD ₂ Cl ₂	569	_	

TABLE 24 (cont.) δ^{11} B values of some Lewis-base-borane (BH₃) adducts.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
${(Ph_2P)_2(CH_2)_n \cdot 2BH_3}$					
n = 2	-40.3	CDCl ₃	570	-	
3	-39.8	CDCl ₃	570		
4	-40.2	CDCl ₃	570	-	
Ph ₂ (NHPh)P—BH ₃ ^a	-36.1	CD_2Cl_2	606	³¹ P	606
-, ,	(J(PB) = 61.0)				
[cpW(CO) ₂ (PMe ₃)PPh ₂ -	-BH ₃]				
	-28.6	CD_3NO_2	592	³¹ P	592
	(J(PB) = 48.0)				
[cpMo(CO) ₂ P(Ph)N(SiM	$[e_3)_2$ —BH ₃]				
	-55.6	CD_2Cl_2	593	¹³ C, ³¹ P	593
F ₃ P—BH ₃	-48.2(106.0)		567	³¹ P	567
	(J(PB) = 39.0)				
Me ₃ As—BH ₃	-32.2(100.0)		571		
Me ₂ AsH—BH ₃	-34.2(105.4)	THF	572		
$Me_2(Et_2N)As-BH_3$	-36.6	THF	572	¹³ C	572
· - ·	-36.1(97.6)	THF	579	¹³ C	579
Me ₂ (NiPr ₂)As—BH ₃	-29.5(104.5)	THF	579	¹³ C	579
[cp(CO) ₂ (Me ₃ P)MAsMe	₂ —BH ₃]				
M = Mo	-27.1(100.0)	$CDCl_3$	765	³¹ P	765
\mathbf{w}	-28.0(104.0)	CDCl₃	765	³¹ P	765

^a See Ref. 816 for ¹¹B, ¹³C, ²⁹Si and ³¹P NMR data of BH₃ adducts of Me_2P —NMe₂ (ratios 1:1 and 2:1) and Me_2P —N(SiMe₃)₂.

TABLE 25 $\delta^{11} B \text{ values of some Lewis-base-borane } (BH_2X, BHX_2) \text{ adducts } (X = F, Cl, Br, I).^a$

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
Et ₂ O—BH ₂ Cl	4.3(131.0)	Et ₂ O	573	_	
	5.0(136.0)	Et ₂ O	580	_	
Et ₂ O—BHCl ₂	7.9(152.0)	Et ₂ O	574	_	
	8.0(163.0)	Et ₂ O	582	_	
Et ₂ O—BH ₂ Br	2.6(137.0)	Et ₂ O	581		
Et ₂ OBHBr ₂	0.3(165.0)	Et ₂ O	581	_	
O-BH ₂ SPh	2.3	HF	575	_	

^b ¹J(¹¹B¹H) values in parentheses.

TABLE~25~(cont.) $\delta^{11}B$ values of some Lewis-base–borane (BH₂X, BHX₂) adducts (X = F, Cl, Br, I).*

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Et ₂ O—BH ₂ NS ₇	13.0(136.0)		576		
Me ₂ S—BH ₂ Cl	-6.7		578	_	
Me ₂ S—BH ₂ Br	-10.9(131.0)	CS ₂	578		
	-10.5	Me ₂ S	578	_	
Me ₂ S—BH ₂ I	-19.9(136.0)	CS_2	577		
	-20.5	Me_2S	578	_	
Me ₂ S—BHBr ₂	-8.2(162.0)	CS ₂	577		
Me ₂ S—BHI ₂	-35.2(160.0)	CS_2	577	_	
H ₃ NBHF ₂	-3.6(140.0)		583	¹⁹ F	583
	(J(FB) = 70.0)				
H ₃ N—BH ₂ Cl	-9.1(120.0)	Et ₂ O	581		
H ₃ N—BHCl ₂	-1.3(141.0)	Et ₂ O	581		
H ₃ NBH ₂ Br	-12.1(126.0)	Et ₂ O	581		
Me ₃ N—BH ₂ F	5.1(113.0)	-	584	13C	586
2	(J(FB) = 88.5)				
Me ₃ N—BHF ₂	4.1(146.0)		584	13C	586
3 2	(J(FB) = 73.7)			Ü	200
Me ₃ N-BH ₂ Cl	-0.5(121.0)	C_6H_6	585		
Me ₃ N—BH ₂ Br	-2.9(129.0)	C_6H_6	585		
0-	()	-00			
Me ₃ N-HB	7.7(127.0)	CH ₂ Cl ₂	557		
Me_3N-HB	5.9(128.0)	THF	557		
$Me_3N-BH_2C=N$	-14.9(105.0)	CH ₂ Cl ₂	587		
C ₅ H ₅ N—BH ₂ CN	-16.0(102.0)		649	_	
2-MeC ₅ H ₅ NBH ₂ CN	-18.0(105.0)		649		
$Me_3N-BH_2N=C$	-7.5(115.0)	CH ₂ Cl ₂	587	13C	587
H₃PBH₂Cl	-19.0(130.0)	MeI	595	³¹ P	595
	(J(PB) = 41.0)				
H ₃ P—BHCl ₂	-6.0(131.0)	MeI	595	³¹ P	595
	(J(PB) = 131.0)				
H ₃ P—BH ₂ Br	-26.0(130.0)	MeI	595	³¹ P	595
	(J(PB) = 55.0)				
Me ₃ P—BH ₂ Br	-24.1(92.0)	C_6H_6	585		
	(J(PB) = 92.0)				
H ₃ P—BHBr ₂	-19.0(149.0)	MeI	595	³¹ P	595
_	(J(PB) = 91.0)				
H ₃ P—BH ₂ I	-39.0(130.0)	MeI	595	³¹ P	595
_	(J(PB) = 60.0)				
H ₃ P—BHI ₂	-54.0(154.0) ($J(PB) = 91.0$)	MeI	595	³¹ P	595

TABLE~25~(cont.) $\delta^{11}B$ values of some Lewis-base–borane (BH₂X, BHX₂) adducts (X = F, Cl, Br, I).

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me ₃ P-HB S	-11.3(115.0) ($J(PB) = 84.0$)		557	³¹ P	557
Ph ₃ P—BH ₂ CN	-33.6(79.0) ($J(PB) = 79.0$)		649		
(MeO) ₃ P—BH ₂ CN	-40.1(96.0) ($J(PB) = 126.0$)		649	_	

^a ¹J(¹¹B¹H) values in parentheses.

TABLE~~26 $\delta^{11}B$ values of some Lewis-base–borane (BX3) adducts (X = F, Cl, Br, I). a

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Et ₂ O—BF ₃	0	Et ₂ O	5	¹⁹ F	526
$R(R^1)C=O-BF_3$	+2.7 to -1	-	5	13C	596
Et ₂ O-BCl ₃	10.5	Et ₂ O	574	_	
Me ₃ Si-OS(CF ₃)O ₂ -	-BCl ₃	-			
. , ., .	-2.6	SO₂CIF, -35°C	608	²⁹ Si	608
Et ₂ O-BBr ₃	-6.1	Et ₂ O	308	_	
Me ₂ S—BF ₃	3.1		597	_	
	(J(FB) = 24.0)				
Me ₂ S—BCl ₃	7.1	CH ₂ Cl ₂	597	_	
Me ₂ S—BBr ₃	-11.2	CH_2Cl_2	597	_	
S-BBr ₃	-10.1	Thiophene	5	_	
Me ₂ S—BI ₃	-68.7	CH ₂ Cl ₂	597	_	
Me ₂ Se—BCl ₃	4.5	CH ₂ Cl ₂	182	⁷⁷ Se	182
H_3N-BF_3	-0.9	CH₃CN	568		
	(J(FB) = 13.9)				
$Me_3N-BF_3^b$	0.8	CH ₃ CN	568	¹³ C	586
				15N	599
				19F	598
H ₃ N—BCl ₃	4.2	Et ₂ O	581	_	
Me ₃ N—BCl ₃	10.2	C_6H_6	107	13C	586
				15N	599
Me ₃ N—BBr ₃	-3.1	C_6H_6	107	13C	586
				15N	599

TABLE 26 (cont.) δ^{11} B values of some Lewis-base-borane (BX₃) adducts (X = F, Cl, Br, I).²

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Me ₃ N—BI ₃	-54.4	CHCl₃	107	¹³ C ¹⁵ N	586 599
Pyridine—BX ₃				•	2,,
X = F	-0.3		204		
Cl	8.0		204		
Br	-7.2	C_7H_8	474	14N	474
I	-60		308	_	
Me ₃ P—BF ₃	0.6		478	¹⁹ F, ³¹ P	600
	(J(PB) = 180.0)				
	(J(FB) = 50.0)				
H ₃ P—BCl ₃	1.7	MeI	600	³¹ P	600
Me ₃ P—BCl ₃	3.0	Monoglyme	557		
	(J(PB) = 166.0)				
H ₃ P—BBr ₃	-22.7	MeI	600	³¹ P	600
	(J(PB) = 134.0)				
Me ₃ P—BBr ₃	-15.5	MeI	595	³¹ P	595
	(J(PB) = 165.0)				
H_3P-BI_3	-89.4	MeI	600	³¹ P	600
	(J(PB) = 127.0)				
Me_3P-BI_3	-54.0		601		
	(J(PB) = 116.0)				
Ph ₃ As—BF ₃	2.8	CH_2Cl_2	602	_	
Me ₃ As—BCl ₃	4.5	CD_2Cl_2	603		
Me ₃ As—BBr ₃	-14.7	CD_2Cl_2	603	_	
Me ₃ As—BI ₃	-73.8	CD_2Cl_2	603	_	
Me ₃ Sb—BBr ₃	-17.3	$CDCl_2$	604		
Me_3Sb-BI_3	-90.4	CDCl ₃	604		

^a See Ref. 5 for further data, as well as for data on X = OR, SR.

b Ref. 791 lists some data for Ph(Me)NH—BF₃ (-0.6, $^{1}J(FB) = 14$ Hz), —BF₂Cl (+3.3, $^{1}J(FB) = 42$ Hz), —BFCl₂ (+6.4, $^{1}J(FB) = 68$ Hz), —BCl₃ (+7.4) and Et₃N—BF₃ (-0.6, $^{1}J(FB) = 19$ Hz), —BF₂Cl (+5.1, $^{1}J(FB) = 47$ Hz).

TABLE 27 $\delta^{11} B$ values of various dimeric and trimeric boranes.

Compour	nd		δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
[Me ₂ BNI	H ₂] ₂		-3.0		127	15N	556
H ₂ BN(H			-5.4	Acetone-d ₆	671	13C	671
(HC=C	,	$[e_2]_2$	-5.6	CH ₂ Cl ₂	85	_	
[H(Me)B	/-		-6.0		627	_	
,		-	(J(BH) = 115.0)				
[Me(F)B	NMe ₂]	,	7.0		127	_	
Me(Cl)E			10.1		127		
[Me(Br)I			10.5		127	13C	7
H ₂ BNH		-	-10.9	MeOH	626	_	
H ₂ BNM			5.3		627		
	2,2		(J(BH) = 113.0)				
H(CI)BN	Me ₂]		6.2	CDCl ₃	628	_	
((<i>)</i>	2]2		(J(BH) = 137.0)				
[H(Br)Bl	NMe ₃ l ₃		8.5	CDCl ₃	628		
[()		•	(J(BH) = 139.0)				
[F ₂ BOM	el.		0.7	C_6D_6	776	¹⁹ F	776
[F ₂ BNMe			0.9	C_6H_6	107	19F	526, 766
[Cl ₂ BNM			10.4	C_6H_6	107		520,700
[Br ₂ BNM			6.1	C_6H_6	107		
$Et_{2}B$ R^{1} R^{2} R^{1} R^{2}		$ m R^3$ $ m R^4$	-2.3	C_6D_6	41	¹³ C, ¹⁴ N	41
			-		(21	¹³ C	(22
Et Et	Et	Et	2.2	CDCI	631 637	13C	632 637
Ph Ph	Ph	Ph	1.8	CDCl₃		13C	634
Ph Ph	H	Н	$-8.4(BH_2)$	CDCl ₃	634	C	034
Et O	B Et	Et	1.7(BPh ₂) 1.8 31.5(BO ₂)	CDCl ₃	635	¹³ C	635
Ph O	B O	Ph	1.5 28.7(BO ₂)	CDCl ₃	635		

TABLE~27~~(cont.) $\delta^{11}B$ values of various dimeric and trimeric boranes.

Con	npoun	d		δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Н	Н	Н	Н	-8.8 ($J(BH) = 108.0$)		629	¹⁵ N	630
Br	Br	Br	Br	-7.0	CDCl ₃	633	_	
pz	pz	pz	pz	0.7	CD ₃ CN	635	13C	630,635
	pz Zn Cl ₂	pz	zn Zn Cl ₂	-0.4	CD₃CN	636	¹³ C	636
(pz	= <i>N</i> -p	yrazo	lyl)					
ŀ	X N-	-N BI	H ₂					
X	X'	Y	\mathbf{Y}'					
Me	Me	Н	Н	-12.2 $(J(BH) = 105.0)$ -9.0 $(J(BH) = 105.0)$	CDCl ₃	638	_	
Me	Н	Н	Me	-10.5 ($J(BH) = 105.0$)	CDCl ₃	638		
(H ₂	BPMe	2)3		-32.4 (J(BH) = 100.0) (J(PB) = 79.3)	C_6D_6	173	¹³ C, ³¹ P	173
(Cl ₂	BPEt	2)2		-1.5 (J(PB) = 99.5)	C_6H_6	534	¹³ P	534
(H ₂	BAsM	(e ₂) ₂		-30.3 ($J(BH) = 109.9$)	C ₆ H ₆	5		

^a See Ref. 5 for more data.

TABLE 28 $\delta^{11}\!B$ values of various chelate complexes.

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
$ \begin{array}{c} R^3 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $					
R^1 R^2 R^3 R^4					
Me Me Me Me Et Et Me Me Pr Pr Me Me Pr Cl Me Me Ph ClO ₄ Ph Ph Cl Cl Me Me Br Br Me Me	13.0 14.7 14.0 11.3 8.1 7.9 3.9	C ₆ H ₆ CHCl ₃ CHCl ₃ CHC ₂ Cl ₂ CHCl ₃ CHCl ₃	621 622 618 618 623 618 618	 ¹³ C ¹³ C ³⁵ Cl ¹³ C	618 618 623 618 618
Et Et NH	-2.5	CH₂Cl₂	613	¹³ C, ¹⁴ N	613
R_3 C R^4 B B R^2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Ph Ph H H Ph Ph Me OH Ph MeO H Pr	3.3 6.1 4.8	Dioxane C_6H_6 C_6H_6	625 614 614	 ¹³ C ¹³ C	614 614
$O-B-R^1$					
R^1 R^2					
Et Et C ₈ H ₁₄ ^b H H	14.4 14.0 5.1 (J(BH) = 1	C ₆ H ₆ Monoglyme 112.0)	622 624 612		

TABLE 28 (cont.) δ^{11} B values of various chelate complexes.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
Me Me B Me B Me Me	17.2	CDCl ₃	620		
$ \begin{array}{c} O \\ R^1 - B - N - R^2 \\ O \\ R^{1c} \\ R^{2c} \end{array} $					
CMe ₂ HCMe ₂ H Ph H Ph Me	14.0 10.7 12.2	THF DMSO-d ₆ DMSO-d ₆	610 609 609	¹³ C ¹⁵ N ¹⁵ N	610 611 611
$ \begin{array}{cccc} O & & & R^{1c} & R^{2c} \\ R^{1}-B-N-R^{2} & & \overline{Et} & H \end{array} $	11.8	DMF	616 617		617
$X = F$ $N - BX_2$ I F_1	6.0 8.5 -25.6	CDCl ₃ CDCl ₃ CDCl ₃	619 619 619		
$Me - O-B$ $O-B$ F_2 $O-Me$	-0.9	CDCl ₃	776	¹⁹ F	776
Ph O O O O O O O O O O O O O O O O O O O	11.8	CDCl₃	615	¹³ C	615

^a Ref. 5, pp. 333–339 provides an extensive list of $δ^{11}$ B values for chelate complexes. ^b C₈H₁₄ = carbon skeleton of the 9-borabicyclo[3.3.1]nonane system. ^c See Ref. 810 for further NMR data (11 B, 13 C) of similar compounds.

TABLE 29 $\delta^{11}\!B$ values of cationic tetraccordinate boron compounds.

Compound	δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
Me_2B $Br^ Me_2$ Br^-	9.8	МеОН	5	_	
[Me ₂ B(pyridine) ₂] ⁺ Br ⁻	6.3	МеОН	5		
	10.1		763	¹³ C	763
$[H_2B(NH_3)_2]^+I^-$	-14.1	D_2O	568	_	
$[H_2B(pyridine)_2]^+$	2.1	CH_2Cl_2	641		
$[F_2B(NMe_3)_2]^+Br^-$	1.9	CDCl ₃	642	¹⁹ F	642
(MeS) ₂ B CI	11.5	CH ₂ Cl ₂	644	_	
$[\mathrm{Et_2B}(\mu\text{-pz})_2\mathrm{B}(\mu\text{-pz})_2\mathrm{BEt}$	2] ^{+a}	D1400 1	ć 10		
PF ₆	4.7(BEt ₂) -2.2	DMSO-d ₆	643		
$[H_2B(\mu\text{-pz})_2B(\mu\text{-pz})BH_2]$					
PF ₆	-7.5(BH ₂) -1.5	CD₃CN	643	¹³ C	643
Me ₂ B Br	-14.5		5		
[Me2B(PMe3)2]+Br-	-21.7		645	¹³ C, ³¹ P	645
BH ₄ ⁻ (J	-34.9 f(BH) = 70.0) f(PB) = 66.8) -35.4(BH ₄) f(BH) = 85.5)		569	¹³ C, ³¹ P	569

 $^{^{}a}$ pz = N-pyrazolyl.

 ${\rm TABLE~30}$ $\delta^{11}{\rm B~values~of~some~organylborates~and~zwitterionic~adducts.}^{a,b,c}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹³ C	406
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹³ C	503
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{ccccccc} Me_3SiCH_2 & -31.7(78.0) & THF & 500 \\ PhCH_2 & -26.1(75.0) & C_6D_6 & 500 \\ Me_2NCH_2 & -32.0(75.0) & C_6D_6 & 500 \\ \end{array}$	⁶ Li	542
Me_2NCH_2 $-32.0(75.0)$ C_6D_6 500		
	13C	496
	¹³ C	505
C(O)OMe -33.5 506		
$[1-H_3B-1,2-C_2B_{10}H_{11}]^ -20.4(88.0)$ 605	11B, 13C	605
$Me_3P-CH_2-BH_3$ $-31.1(88.5)$ $CDCl_2$ 764	¹³ C, ³¹ P	764
$Et_3P-CH_2-BH_3$ -32.0(88.5) CD ₂ Cl ₂ 764	¹³ C. ³¹ P	764
$iPr_3P-CH_2-BH_3$ $-33.7(87.0)$ CDCl ₃ 764	¹³ C, ³¹ P	764
iPr_3P —CH(Me)—BH ₃ -27.4(87.0) CD ₂ Cl ₂ 764	¹³ C. ³¹ P	764
tBu_3P — CH_2 — BH_3 $-28.9(88.5)$ C_6D_6 764	¹³ C, ³¹ P	764
$[R^1R^2BH_2]^-$		
R^1 R^2		
Me Me -23.6(66.6) THF 500	_	
-21.8(64.0) Et ₂ O 525	_	
—- · · · · · · · · · · · · · · · · · · ·	_	
· / -		
		
P_r P_r $-11.5(67.0)$ Et_2O 825		
	_	
iBu iBu -19.1(67.0) 507		
tBu tBu $-6.4(70.3)$ 500	_	
sBu tBu -13.4(66.6) 123	_	

 ${\rm TABLE~30~(cont.)}$ $\delta^{11}{\rm B~values~of~some~organylborates~and~zwitterionic~adducts.}^{a,b,c}$

Compound [RBH ₃]-		δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
R ¹	R ²						
C ₈ H ₁₄	,		-17.8(70.0)		7	13C	7
			-17.4(72.1)		509		
CHMe ₂ CHM	ie CH	Me₂CHMe	-12.3(68.0)		507		
c-C ₅ H ₉	c-C	5H9	-11.2(68.0)	Et ₂ O	825		
$c-C_6H_{11}$	c-C	₆ H ₁₁	-9.3(67.0)		507		
Me	Me						
			-4.8(69.0)	THF	509	-	
PhCH ₂	PhO	CH ₂	-12.9(72.0)	Et ₂ O	825		
Ph	Ph	2	-15.2	2020	508		
CN	CN		-42.2(96.5)	1,4-Dioxane	7	13C	7
Ph ₃ PCH ₂ B	H ₂ c—C ₆ F	I ₁₁	-19.8	CDCl ₃	519	³¹ P	519
[R ¹ R ² R ³ BH]	1-						
R ¹	R ²	R³					
Me	Me	Me	-21.0(66.6)	THF	500		
Et	Et	Et	-12.9(70.0)	THF	510	-	
			-12.8(70.0)	THF	511	_	
Bu	Bu	Bu	-14.4(75.0)	THF	500		
			-15.5(78.0)	THF	511	-	
iBu	iBi	iBu	-18.4(68.0)	THF	511		
sBu	sBu	sBu	-7.5(68.0)	THF	511	_	
tBu	tBu	tBu	-2.3(83.0)	THF	500	-	
c-C ₅ H ₉	c-C ₅ H ₉	c-C ₅ H ₉	-10.7(65.0)	THF	511		
c-C ₆ H ₁₁	$c-C_6H_{11}$		-8.0(70.0)	THF	511		
Me	$c-C_6H_{11}$	c-C ₆ H ₁₁	-12.0(60.0)	THF	512		
Me	C ₈ I		-16.0(61.0)	THF	512	_	
Ph	C ₈ F		-13.9(55.0)	THF	512	_	
tBu—C=C	C ₈ F		-20.0(66.0)	THF/hexane	7	_	
Ph	Ph	Ph	-7.4(76.2)	Et ₂ O	496	_	
	H B B	-	-11.8(70.0) -12.2(68.0)	THF THF	511 511		
L (two	isomers)						

TABLE 30 (cont.) δ^{11} B values of some organylborates and zwitterionic adducts. **a,b,c*

Compour	nd [RBH ₃]		_	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
[R ¹ R ² R ³		n.3	D4					• • • • • • • • • • • • • • • • • • • •
R ¹	R ²	R ³	R ⁴					
Me	Me	Me	Me	-20.7	THF	500	13C	513, 514
Et	Et	Et	Et	-16.6	THF	515	13C	5
iPr	iPr	iРr	iPr	-15.4	THF	496	_	
Bu	Bu	Bu	Bu	-17.5	THF	500	13C	516
C_8H_1	4	C_8H_{14}	ı	-19.8	THF	517		
C_8H_1	.4	Me	Me	-19.2	THF	512		
C_8H_1	.4	Et	Et	-17.8	THF	517		
$c-C_6H_{11}$	$c-C_6H_{11}$	Me	Me	-17.8	THF	512		
			CH2NMe2					
Et	Et	Et (>	-12.8	C_6D_6	490	¹³ C	490
C_8H	14	Ph	Ph	-14.2	THF	512		
Et	Et	Et	C≡CH	-17.3	THF	518		
c-C ₆ H ₁₁	tBu		\	-8.0	CD_2Cl_2	345		
c-C ₆ H ₁₁			\	-9.5	Acetone-d ₆	345		
Bu	Bu !	Me Me ₂	Me	-16.9	C_6D_6	65	¹³ C, ¹¹⁹	Sn 65
Ph	Ph			-7.3	Acetone-d ₆	345	_	
C ₈ H	14	C≡CtBu	C≡CtBu	-22.7	THF/hexane	: 7		
Ph	Ph	Ph	Ph	-6.3	CH₃CN	107	¹³ C	513, 520, 521, 522
C ₆ H ₁₃ C	= C C ₆ H ₁₃ C ≡	C ₆ H ₁₃ C≡	≡C C ₆ H ₁₃ C≡≡C	-33.6	THF	523		J 22
PhC=C	PhC=C	PhC≔C		-31.0	CDCl ₃	524	13C	524
Et	Et	Et	CN	-17.0	THF	517	_	
Ph	C≡N		1	-15.3	Acetone-d ₆	378		
[<i>B</i> -Me-	-1-boraada	mantane]-		-20.3	Et ₂ O/THF	525	_	

^a The δ^{11} B values vary with the cation and with the solvent; a range of approximately 1.5 ppm for each compound may be observed.

^b For further data see Ref. 7.

^c ¹J(¹¹B¹H) values in parentheses.
^d Should be remeasured.

TABLE 31 $\delta^{11} B$ values of borates with boron-element bonds."

Compound	$\delta^{11}B$	Solvent	Ref.	Other nuclei	Ref.
[BF ₄] ⁻	$0.1 \text{ to } -2.3^{b,c}$		5	19F	526
[BCl ₄]	4.5 to 8.0		5	_	
[BBr ₄] ⁻	-23.0 to -26.0		5	_	
[BL ₄]-	-128		5	_	
[B(OR) ₄]-	1.1 to 3.5		5,527, 528,529, 530,813	¹³ C	529, 531
$[B(OP(O)F_2)_4]^-$	-4.4	_	607	¹⁹ F, ³¹ P	607
$[B(SPh)_4]^-$	6.3		204		007
[B(NHMe)] ₄	0.2	THF	107		
$\begin{bmatrix} B(N) \\ X = CH, N \end{bmatrix}^{-},$	1.0		5		
$[B(NMe_2)pz_3]^-,$ $pz = N-pyrazolyl$	2.7	DMSO-d ₆	640	_	
$[B(NO_3)_4]^-$	5.3		5		
$[B(NS(O)F_2)_4]^-$	8.0	CD ₃ CN	533	¹⁹ F	533
$[B(PEt_2)_4]^-$	-21.0	Et ₂ O	534	³¹ P	
2743	(J(PB) = 32.2)	-			
$[B(SiMe_3)_4]^-$	_53.4	THF	535	¹³ C, ²⁹ Si	535
-/-2	(J(SiB) = 48.0)				
[BuBF ₃]	2.9, 0.4	HMPA,	540	⁷ Li	540
	(J(FB) = 65.0)	Et ₂ O			
[PhBCl ₃]-	9.7		536		
[Ph ₂ BCl ₂] ⁻	11.0		536		
[MeB(OMe) ₃] ⁻	6.0	MeOH	123	_	
$[Me_2B(OMe)_2]^-$	14.4	MeOH	123	_	
$[C_8H_{14}B(OH)_2]^{-d}$	3.1	THF	7		
$[C_8H_{14}B(OC(O)H)_2]^{-d}$	8.0	THF	7		
[Me ₃ BOMe] ⁻	-1.0	MeOH	123		
[B-MeO—1-bora-					
adamantane] ⁻ [H	-3.1 1-	MeOH/THF	525	_	
C ₈ H ₁₄ B OCMe ₂ CHMe	-2.8	THF	537		
$\left[Me(H)B \right]^{-}$	9.3	THF	650	_	
$\begin{bmatrix} tBu(H)B \\ O \end{bmatrix}^{-}$	7.0 $(J(BH) = 75)$	THF	650	_	

 ${\it TABLE~31~(cont.)}$ $\delta^{^{11}}{\it B}$ values of borates with boron-element bonds. *

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
[Me ₃ BNHMe]	-9.5	Et ₂ O/ TMEDA	272		
[Et ₃ BNH ₂]	-9.8	C_7H_8	7		
$[C_8H_{14}BEtNH_2]^-$	-10.6	C_6D_6	7		
[Ph ₃ BNH ₂] ⁻	-6.0	THF	7		
$[Et_3B-PPh_2]^-$	-8.1	THF	7	_	
$[MeB(SiMe_3)_3]^-$	-45.3 ($J(SiB) = 53.0$)	C_6D_6	535,538	¹³ C	535
$[\mathrm{Me_2B}(\mathrm{SiMe_3})_2]^-$	-36.1 ($J(SiB) = 63.0$)	Hexane	538	13C	535
$\left[\left[\left(\operatorname{SiMe}_{3} \right)_{2} \right]^{-} \right]$	-31.2	C_6D_6	535		
$[C_8H_{14}B(SiMe_3)_2]^{-d}$	-25.0 ($J(SiB) = 65.0$)	THF	538	13C	535
[Me₃BSiMe₃] ⁻	-28.5 ($J(SiB) = 74.0$)	C_6D_6	538	¹³ C	535
$[Me_3BSi(SiMe_3)_3]^-$	-17.9	C_7D_8	539	¹³ C	539
$[C_8H_{14}B(Me)SiMe_3]^{-d}$	-23.0	C_6D_6	535	13C	535
[H₃BOH]⁻	-13.9(82.0)		543	_	
	-13.2(87.0)		639		
[H₃BSH] ⁻	-25.0(94)	THF	544		
$[H_2B(SH)]_2$	-14.5(114)	THF	544	_	
[HB(SMe) ₃] ⁻	0.9(122)	Diglyme	5		
[H ₃ BNMe ₂]	-14.7(87)	Monoglyme	545	_	
$\left[H_2B(N) \right]_2$	-7.4(96)	THF	546	_	
$\left[HB(N)_{3}\right]^{-\epsilon}$	-1.5(105)		546	_	
[H₃BPH₂]	-37.3(90) ($J(PB) = 29$)		547	³¹ P	547
Me ₂ Au BH ₂ Me ₂ Me ₂ Me ₂ Me ₂	-32.7 ($J(BH) = 95$) ($J(PB) = 95$)	C_6D_6	761	¹³ C, ³¹ P	761
H ₂ B Au BH ₂ P Me ₂ Me ₂	-29.0 ($J(BH) = 92.5$) ($J(PB) = 96.8$)	C_6D_6	761	¹³ C, ³¹ P	761

•	D values of borates w	iai boroii–eieilie	in bonds.		
Compound	$\delta^{11}\mathrm{B}$	Solvent	Ref.	Other nuclei	Ref.
[H ₃ B—SiMe ₃]	-42.7(77.7) ($J(SiB) = 74.0$)	THF	133	¹³ C	133
$[H_3B-SiF_3]^{-f}$	-55.6(85.0)	CH ₂ Cl ₂	548	¹⁹ F	548
$[H_2B(SiF_3)_2]^{-f}$	-46.9(86.0)	CH₃Cl₂	548	¹⁹ F	548
$[H_3B-GeMe_3]^-$	-40.5(81.3)	THF	133	_	
[H ₂ B—SnMe ₂]	-43.7(91.0)	THF	133	¹³ C, ¹¹⁹ Sn	133

TABLE 31 (cont.) λ^{11} R values of horotes with horon-element hands *

TABLE 32 δ^{11} B values of some metal borates.*

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
Li[BH ₄]	-38 to -41.6		5		
Li[BD ₄]	$(\Delta \delta^{i} - 0.558)$		549		
Na[BH ₄]	-38.7 to -43.6		5		
[Bu ₄ N][BH ₄]	-34.8	CH ₂ Cl ₂	548	_	
	-36.0 to -40.5		5		
$Zr(BH_4)_4$	-8.0(90)	C_7D_8	550	⁹¹ Zr	550
$[(cp)_2Zr(Me)BH_4]$	-3.4(86.0)	THF	762		
$[(cp)_2Zr(Me)H_3BMe]^b$	7.7(73.0)	THF	762	_	
$[(cp)_2Zr(H)H_2BMe_2]^b$	15.8 (40.0)	THF	762		
Sc(NH ₄) ₃	-18.7(80)	C_6D_6	551	⁴⁵ Sc	551
$Y(BH_4)_3$	-23.2(84)	C_6D_6	551		
[FeH[dmpe]BH ₄]	-38.1(82)	C_7D_8	552	³¹ P	552
$[(\mu\text{-H})\text{Fe}_3(\text{CO})_9(\mu_3\text{-BH}_4)]^c$	1.8 (broad)	C_6D_6	654		

^a See Ref. 5 for further data.

^b For [$\{U(\eta-C_5H_3(SiMe_3)_2]_2 (\mu-BF_4)(\mu-F)\}_2$] an equilibrium in solution between the dimer and the monomer has been observed by ¹¹B, ¹⁹F and ¹H NMR; the paramagnetic species show ¹¹B resonances at $\delta^{11}B = -120.7$ (monomer) and -131.9 (dimer). ⁷⁸² ^c Ref. 815 gives ¹¹B and ¹⁹F NMR data for fluoroperoxide compounds of boron of the type

 $[[]BF_{4-n}(OOH)_n]^-$ with n = 1,2,3.

 $^{^{}d}$ C₈H₁₄B = 9-borabicyclo[3.3.1]nonyl.

^e Ref. 822 lists ¹¹B NMR data for hydrotris(3,5-dimethylpyrazolyl)borates of the type $MCl_3(cp)(HBpz_3)$ (M = Th(iv), U(iv), $MCl_3(HBpz_3)$ —THF, $MCl_2(NPh_2)_3(HBpz_3)$ and $MCl_2[N(SiMe_3)_2](HBpz_3)$.

f Assignment in Ref. 548 has been corrected.

TABLE 32 (cont.)

δ^{11} B values of some metal borates.*

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
$[(\mu\text{-H})\text{Fe}_3(\text{CO})_9(\mu_3\text{-BH}_3\text{Me})]^c$	22.1(40.0)	Hexane	656		
$[(\mu\text{-H})(\mu\text{-CO})\text{Fe}_3(\text{CO})_9\text{BH}_2]^c$	56.0(145, 50)	C_6D_6	655	_	
$[(\mu-H)Fe_3(CO)_9(\mu_2-BH_3)]^{-c}$	6.2(96, 58)	Acetone-d ₆	656		
$[(\mu-H)Fe_3(CO)_9(\mu_2-BH_2Me)]^{-c}$	29.3(53)	Acetone-d ₆	656	_	
[Ru(CO)(H)(PiPr ₃) ₂ BH ₄]	8.9	C_6D_6	553	³¹ P	553
$[Os(CO)(H)(PiPr_3)_2BH_4]$	14.85	C_6D_6	553	³¹ P	553
[Co(terpy)BH ₄] ^b	12.9(80)	Acetone-d ₆	554	_	
[Th(MeBH ₃) ₄ OEt ₂ ^d	-1.0	C_7D_8	555	13C	555

^a For an extensive list of δ^{11} B values see Ref. 5.

^d ¹¹B and ¹³C NMR data of U(MeBH₃)₄, Ref. 827.

A new type of μ -diborane has been characterized by X-ray crystallography, ¹¹B and ¹³C NMR, with a carboxyl group as a bridging ligand: ²⁸²

$$R_{2}B = 9$$
-borabicyclo[3.3.1]nonyl $\delta^{11}B = 18.8 (C_{7}D_{8})$

(b) Lewis-base-borane adducts (Tables 22–29). All trends in the δ^{11} B values of Lewis-base-borane adducts have been stated in previous accounts. ^{5,7} It is noteworthy that the temperature dependence of ¹¹B NMR signals is useful in the evaluation of the coordinative bond, for example in the case of the (N-B)-perhydro-2-thexyl-6-methyl-1,3-dioxa-6-aza-2-boracine ⁶¹⁰

Me-N-B-CMe₂-CHMe₂
$$\delta^{11}B = 23.9 (40 \text{ °C})$$

17.3 (-40 °C)

Competition between various sites of coordination of a borane may be studied by ¹¹B NMR. For a series of five-membered heterocycles, coordination occurs at the nitrogen atom and the attack of the borane takes

^b Assumed structure.

^c See Ref. 824 for Fe₄(CO)₁₂[Au(PPh₃)]₂BH; δ^{11} B = +141.3; δ^{31} P = 53.0.

place preferably at the sterically less hindered position: 561,562,652

(c) Borates (Tables 30–32). A large amount of $\delta^{11}B$ data for organylborates has become available (see Table 30). Therefore a correlation between $\delta^{13}C$ (alkanes) and $\delta^{11}B$ (organylborates) can now be based on more data pairs:

$$\delta^{11}B = 0.52\delta^{13}C - 36.1$$
 (r = 0.988). (18)

There are also a considerable number of new borates with boron–element bonds (Table 31), including B—Si, B—Ge and B—Sn bonds. In this context a comparison between the Me₃Si⁻, F₃Si⁻ anions and the PMe₃, PF₃ ligands is of interest:

$$\delta^{11}B = \begin{cases} [H_3B - SiMe_3]^- & \Delta^{11}B & [H_3B - SiF_3]^- \\ -42.7 & 12.9 & -55, 6 \\ -36.8 & 12.7 & -49.5 \\ H_3B - PMe_3 & H_3B - PF_3 \end{cases}$$

The extreme shielding effect of the SiF₃ and PF₃ groups on the ¹¹B nucleus is not understood at present. The general interest in the influence of fluorine ligands on molecular properties should stimulate further work in this direction.

(d) Organylboron π complexes (Tables 33–38). ¹¹B NMR has played an important role in the development of the chemistry of organylboron π complexes. ³⁷⁷ A large amount of data has been compiled in previous reviews. ^{5,7} Therefore this section deals only with some recent results, and Tables 33–38 list some data for representative compounds. The most common ligands are the borinato system ¹⁶ (Table 34), borole derivatives ^{67,84,378–385} (Table 36), heteroborole compounds ^{15,158,219,386,409,455,460,817} (Table 37), alkenylboranes ^{410–419,461,817} (Table 33) and a great number of various boron–oxygen, ^{416,425} –sulphur ^{422–424} and –nitrogen ^{390,418–421} compounds (Tables 37, 38). In addition to the transition-metal complexes, there is growing interest in π complexes of main-group elements. ^{426–431} For

 ${\bf TABLE~33}$ $\delta^{11}{\bf B}$ values of some alkenylborane–metal complexes. $^{\bullet}$

Compound	δ ¹¹ B	Solvent	Ref.	Other nuclei	Ref.
$M\left[(CH_2)_n\right]$ $B-Ph$					
M n					
[Cr(CO) ₄] 2	29.7	CDCl ₃	465	_	
[Mo(CO) ₄] 2	28.3	CDCl ₃	465	_	
[W(CO) ₄] 2	27.2	CDCl ₃	465	_	
[Mncp(CO)] 2	26.5	CDCl ₃	465	_	
[Fe(CO) ₃] 1	23.0	C_6D_6	413	_	
[Cocp] 1	21.6	C ₂ Cl ₄	450	_	
$[Co(C_5H_5B-Ph)] \qquad 1$	20.9	C_6D_6	450	_	
	(single resonance)				
[RhC ₅ Me ₅] 1	17.3	C ₂ Cl ₄	450		
[NiL] 2	28.3	C_6D_6	415	13C	415
[PdL] 2	28.0	CDCl ₃	415	13C	415
[PtL] 2	27.0	CDCl ₃	415	13C	415
$M\begin{bmatrix} CH_2 = CH \\ CH_2 = CH \end{bmatrix}$ $M \qquad X$					
[RhC ₅ Me ₅] Me	23.6	C_6D_6	414	_	
$[RhC_5Me_5]$ Ph	21.3	C_6D_6	414		
[Ru(CO) ₃] Cl	27.7	C_6D_6	414	_	
$[RhC_5Me_5]$ OMe	25.7	C_6D_6	414		
$M \left[\bigcirc B - Ph \right]$					
$M = [Co(CO)_3]$	20.9	C_6D_6	413	13C	413
[Co(CO) ₂ PMe ₃]	19.6	C_6D_6	413	13C	413
$[Ni(C_5H_5B-Ph)]$	24.4	C_6D_6	413	13C	413
	(single				
$M \left[\underbrace{B-Ph} \right]$	resonance)				
$M = [Co(CO)_3]$	38.6	C_6D_6	413	13C	413
[Co(CO) ₂ PMe ₃]	30.8	C_6D_6	413	13C	413

 ${\bf TABLE~33~(cont.)}$ $\delta^{11}{\bf B}$ values of some alkenylborane—metal complexes."

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
[Rh(COD)] $B-Ph$	35.0	C_6D_6	417	_	
$[Cocp] \begin{bmatrix} Et & Et \\ R^{1} - B & B - R^{1} \\ R^{2} R^{3} \end{bmatrix}$					
$R^1 R^2 R^3$					
Et Me H Me H H Et Me Me Me Me	27.5 27.3 42.0 41.6	C_6D_6 C_6D_6 C_6D_6	461 461 461 461	¹³ C ¹³ C ¹³ C ¹³ C	461 461 461 461
Me_2B $Pt(PEt_3)_2$ Me $(b) Me BMe_2$ (a)	40.0(a) 73.6(b)	C_7D_8	382	¹³ C, ³¹ P ¹⁹⁵ Pt	382
Et BEt ₂ Pt(depe) H B H Et	46.0 (single resonance)	C_7D_8	382	¹³ C, ³¹ P ¹⁹⁵ Pt	382
[Fe(CO) ₃] B-OMe	38.8		445	_	
$[Fe(CO)_3]\begin{bmatrix} Et & Me \\ & & \\ Et & SiMe_2 \\ & Me \end{bmatrix}$	18.2	C_7D_8	418	¹³ C	418
$[Fe(CO)_3] \begin{bmatrix} CH_2 = CH \\ Me_2N \end{bmatrix} B - Br \end{bmatrix}$	27.2		466	_	

 $^{^{}a}$ L = borane as the ligand shown in the preceding formula.

 ${\bf TABLE~34}$ $\delta^{11}{\bf B}$ values of some borabenzene–metal complexes."

Compound			δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
M R M B-	-R¹						
M	R ¹	R ²					
[HgCl]	Me	Н	35.2	CD₃CN, 50°C	439	_	
[HgCl]	Ph	Н	33.0	CD₃CN, 50°C	439	_	
$[V(CO)_4]$	Me	Н	28.7	C_6D_6	439	_	
[V(CO) ₄]	Ph	Н	26.0	Acetone-d ₆	439		
$Na[Cr(CO)_3]^-$	Me	H	24.6	D_2O	452	_	
Ph ₄ P[Cr(CO) ₃]	Me	Н	23.1	THF	452	_	
$Hg_2[Cr(CO)_3]^-$	Me	Н	26.7	THF	452		
[Cr(CO) ₃]	C_5H_5N	Н	22.3	CD ₂ Cl ₂	432		
$[Mo(CO)_3]$	C_5H_5N	Н	23.5	CD_2Cl_2	432	_	
$[W(CO)_3]$	C ₅ H ₅ N	Н	22.9	CD_2Cl_2	432	_	
$[Mn(CO)_3]$	Me	Н	26.8	Acetone-d ₆	440	_	
[Mn(CO) ₃]	Ph	Н	24.6	Acetone-d ₆	441	_	
$[Mn(CO)_3]$	Ph	4Me	22.7	. 10010110 46	442	_	
$[Mn(CO)_3]$	Me	2-C(O)Me	30.0	CD_2Cl_2	440		
[Re(CO) ₃]	Ph	4-Me	22.4	CD2C12	442	_	
[Fecp]	Me	Н	18.9		443	_	
[Fecp]	Ph	Н	15.2		443	_	
[LFe]	Me	н	20.5	CDCl ₃	444		
[LFe]	tBu	Н	24.6	CDCl ₃	444		
[LFe]	Ph	Н	24.0 14.4	CDCl ₃	444	_	
[LFe]	Ph	4-Me	15.5	CDC13	442	_	
[LFe]	H	H	13.6		445		
[•]			$B^1H) = 12$	20 4	113		
[Fe(toluene)]+	Ph	Н	22.7		443	_	
[Co(CO) ₂]	Ph	H	20.4		446		
[CoC ₄ Me ₄]	Me	H	23.1	CDCl ₃	451		
[CoC ₄ Me ₄]	Me	2-C(O)H	26.4	C ₂ Cl ₄	451		
[CoC ₄ Me ₄]	Me	2-C(O)Me	23.7	C ₂ Cl ₄	451		
[Co(COD)]	Ph	H	20.9	C_2C_4 C_6D_6	447	59Co	770
[Cocp] ⁺	Ph	H	23.3	Acetone-d ₆	449	_	770
[LRu]	Me	H	23.3 12.4	CDCl ₃	448	_	
[LRu]	Ph	H	14.4	C_6D_6	448	_	
[RuC ₆ H ₆] ⁺	Ph	Н	18.2	Acetone-d ₆	450	_	
[Rh(COD)]	Me	н Н	23.5	_	430 448	_	
[Rh(COD)]	Ph	H H		C ₆ D ₆		_	
	r'II	п	20.9	C_6D_6	448	_	

TABLE 34 (cont.)
$\delta^{11} B$ values of some borabenzene-metal complexes.*

Compound			δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
[RhC ₅ Me ₅] ⁺	Ph	Н	21.3	CD ₃ CN	450		
[LOs]	Ph	Н	19.8	CDCl ₃	448	_	
[IrC ₅ Me ₅] ⁺	Ph	Ħ	17.7	CD ₃ CN	450		
[PtMe ₃]	Ph	Н	24.4	C_6D_6	448	_	
[LFe]	Ome	H	23.6	• •	445	_	

^a L = borane as the ligand shown in the preceding formula.

 ${\bf TABLE~35}$ $\delta^{11}{\bf B}$ values of some diborabenzene–metal complexes. a

Compound				δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
$M\begin{bmatrix} R^2 \\ R^1 - B \\ R^2 \end{bmatrix}$	$\begin{bmatrix} R^2 \\ B - R^1 \\ R^2 \end{bmatrix}$	R²	·					
M								
[Cocp]	Me	H		24.0	CS ₂	433		
[Cocp]	Ph	H		22.0	CS ₂	433		
[Cocp]	C ₅ H ₄ Fecp	H		21.0	CS ₂	433		
[Cocp]	Н	H		17.2	CS ₂	433	_	
			(¹ J(¹¹	$B^1H) =$	125.0)			
[Cocp]	Cl	H		24.0	CS ₂	433		
[Cocp]	OMe	H		24.0	CS ₂	433	_	
[Cocp]	NMe ₂	H		22.0	CS ₂	433	_	
[RhC ₅ Me ₅]	Me	H		19.0	CS ₂	433	_	
$[RhC_5Me_5]_2$	Me	H		8.0	CO ₃ NO ₃	454		
[RhC ₅ Me ₅]	Н	H		14.0	CS ₂	433	_	
			$(J(^{11}I$	$3^1H) = 3$	119)			
[RhC ₅ Me ₅]	OMe	H		24.0	CS ₂	433	_	
[LNi]	Me	H		32.0	CS ₂	433	_	
[LNi]	Ph	H		27.0	CS ₂	433	_	
$[Ni(CO)_2]$	C₅H₄Fecp	H		31.0	C_7D_8	84	_	
[Fe(CO) ₃]	F	Me		22.7	C_6H_6	453	19F	453
[Cocp]	F	Me		23.1	C ₆ H ₆	453	19F	453
$[Ni(CO)_2]$	F	Me		24.9	C_6H_6	453	19F	453

 ${\bf TABLE~35~(cont.)}$ $\delta^{{\bf 11}}{\bf B}$ values of some diborabenzene-metal complexes. a

Compound			δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
[Ni(COD)] [LNi] [iPr ₂ N	F F	Me Me	22.0 21.7	C ₆ H ₆ C ₆ H ₆	453 453	¹⁹ F ¹⁹ F	453 453
M = [Fe(CO)] $[Fe(CO)]$		2	31.0 31.0	C_6D_6 C_6D_6	434 434	¹³ C	434
M B	Me ₂						
$M = [RuC_6M]$ $[Ru(CC)]$			30.4 19.0	CD_2Cl_2 CD_2Cl_2	354 354	¹³ C ¹³ C	354 354

 $^{^{}a}$ L = borane as the ligand shown in the preceding formula.

 ${\bf TABLE~36}$ $\delta^{11}{\bf B}$ values of some borole–metal complexes.

Compound						δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
$M = \begin{bmatrix} R^4 \\ R^5 \end{bmatrix}$	R^3 R^2 R^1	R²	R³	R⁴	R⁵					
[LCr(CO) ₂]	iPr ₂ N	Н	Н	Н	Н	28.0	CDCl ₃	381		
$[Mn(CO)_3]_2$	Ph	Н	Н	Н	H	19.7	C ₂ Cl ₄	379	13C	379
$[Mn(CO)_3]_2$	Ph	Et	н	н	н	17.6	C_6D_6	383	_	0,,,
$[Mn(CO)_3]_2$	MeO	Н	Н	H	Ĥ	25.2	CDCl ₃	379		
[LFe(CO)]	iPr ₂ N	H	H	H	H	27.0	CDCl ₃	381		
[Fecp] ₂	Ph	Et	Н	Н	H	4.0	CDCl ₃	383	.—	
[Fe(CO) ₃]	Me	H	Н	H	H	22.4	CD_2Cl_2	379	13C	379
[Fe(CO) ₃]	Ph	Н	Н	Н	Н	20.2	CD_2Cl_2	379	13C	379

TABLE 36 (cont.) $\delta^{11} \mbox{B values of some borole-metal complexes.}^{\bullet}$

Compound						δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
M	R¹	R ²	R³	R ⁴	R ⁵	,				
[Fe(CO) ₃]	MeO	Н	н	Н	H	27.6	C ₂ Cl ₄	379	13C	379
{[Fecp][Cr(CO) ₃]}	Ph	H	H	H	H	9.4	Acetone-d ₆	380		
[cpFeLCo]	Ph	Н	Н	Н	Н	16.7	C_6D_6	648	_	
						7.3				
[Os(CO) ₃]	Ph	H	Н	Н	Н	19.5	CDCl ₂	653		
$[Ru(C_6Me_6)]$	Ph	Н	Н	Н	H	14.0	CDCl ₃	653	_	
[Ru(PPh ₃) ₂ (Cl)H]	Ph	H	Н	H	Н	9.4	CD_2Cl_2	653	³¹ P	
[Os(PPh ₃) ₂ (Cl)H]	Ph	Н	Н	Н	Н	9.0	CD_2Cl_2	653		
[Ru(CO) ₃]	Me	Н	Н	Н	Н	22.8	CD_2Cl_2	653		
[Ru(CO) ₃]	Ph	Н	Н	Н	Н	21.3	CD_2Cl_2	653		
[Ru(CO) ₃]	Ph	Н	Me	Me	Н	18.0	Acetone-d ₆	653		
[Ru(CO) ₃]	MeO	Н	Н	Н	Н	28.3	CD ₂ Cl ₂	653		
$[Ru(C_6H_6)]$	Ph	Н	Н	Н	Н	13.5	Acetone-d ₆	653		
[cpFe(CO)(μ -CO)-							Ť			
Co(CO)]	Ph	H	Н	Н	Н	28.1	CDCl ₃	648		
$[C_0(\widehat{CO})_2]$	Me	Н	Н	Н	H	27.9	CDCl ₃	648	_	
[Co(CO) ₂ I]	Ph	Н	Н	Н	н	24.5	CD ₂ Cl ₂	648	_	
[Co(CO) ₂ Br]	Ph	Н	Н	Н	н	25.1	CD_2Cl_2	648	_	
[LCo ₂ (CO) ₄]	Me	H	H	Н	Н	27.9	CDCl ₃	379	_	
[LCo ₂ (CO) ₄]	Ph	Н	Н	Н	н	25.5	CD ₂ Cl ₂	379	_	
[Cocp]	Me	Н	Н	Н	H	21.9	CDCl ₃	648	_	
[Cocp]	Ph	Н	Н	Н	H	18.0	CD ₂ Cl ₂	648	_	
[LCo] ₂	Me	H	H	H	Н	22.8	CDCl ₃	648	_	
[200]2	1.12					12.3	,			
[LCo] ⁻ [NMe ₄] ⁺	Me	Н	Н	Н	н	14.1	Acetone-da	648		
[LCo]₂Ru	Ph	Н	Н	Н	H	19.6	CD ₂ Cl ₂	648	_	
[]2						8.2				
[CODRhLCo]	Ph	Н	Н	Н	H	18.2	Acetone-d ₆	648	_	
[00210.200]						12.9				
[Cocp]	н	Ph	Ph	Ph	Ph	17.0		385		
[Rhcp]	Me	Н	Н	Н	H	19.6	C ₂ Cl ₄	378	_	
[Rhcp]	Ph	Н	Н	Н	Н	16.4	C ₂ Cl ₄	378	_	
[RhC ₅ Me ₅]	iPr ₂ N	Н	Н	Н	н	22.0	CDCl ₃	381	_	
[LRh]	Me	Н	Н	Н	Н	13.5	Acetone-d ₆	378		
[LRhH]	Me	H	H	H	H	16.0	CDCl ₃	378		
[RhPMe ₃] ⁺	Ph	H	H	Н	Н	23.7	CD ₂ Cl ₂	378		
$[Rh(PMe_3)_3]^+$	Ph	H	H	H	H	25.2	CD_2Cl_2	653	³¹ P	
[Rh(PPh ₃) ₂ Cl]	Ph	Н	Н	Н	Н	32.0	CD_2Cl_2	653	³¹ P	
$[Rh(CN)_3]^{2-}$	Ph	Н	Н	Н	Н	23.6	CD_2Cl_2	378		
[LRh] ₂	Me	Н	Н	Н	Н	22.3	CD_2Cl_2	378	13C	378
						10.8				
						(bridge)				
						()				

TABLE 36 (cont.)

δ^{11}	В	values	of	some	borole-metal	complexes."
---------------	---	--------	----	------	--------------	-------------

Compound						δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
M	R ¹	R ²	R ³	R ⁴	R ⁵		·			•
[Rh(COD)]	iPr ₂ N	Н	Н	Н	Н	15.0	C ₂ Cl ₄	381		
$[Rh(C_2H_4)_2]_2$	iPr ₂ N	Н	Н	Н	Н	14.0	C_6D_6	381		
[LNi]	iPr_2N	Н	H	Н	H	26.0	CDCl ₃	381		
[Nicp] ₂	iPr_2N	H	H	Н	H	10.0	C ₂ Cl ₄	381		
$[Pt(PEt_3)_2]$	Me	Me	Н	Н	Me	19.1	CD_2Cl_2	382	¹³ C, ³¹ P, ¹⁹⁵ Pt	382
[Pt(dppe)]	Me	H	Me	Me	Н	18.0	C_7D_8	382	¹³ C, ³¹ P, ¹⁹⁵ Pt	382
[Pt(COD)]	Ph	Ph	Ph	Ph	Ph	16.0	CD_2Cl_2	67	_	

 $^{^{}a}$ L = borane as the ligand shown in the preceding formula; see Ref. 826 for further NMR data of borolemetal complexes.

 ${\bf TABLE~37}$ $\delta^{11}{\bf B}$ values of some 1,3-diborole-, 1,2,5-thiadiborole- and 1,2-azaborole-metal complexes. a

Compound				δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
$M\begin{bmatrix} R^3 & R^3 \\ R^1 - B & B - R^1 \end{bmatrix}$ M	R¹	R²	R^3					
[Sn(Cocp) ₂]	Et	Me	Et	13.0	C_6D_6	455		
[TlCocp]	Me	Н	Me	20.4	C_6D_6	426	_	
[(Fecp)(Cocp)]	Et	Me	Et	19.6	CS ₂	460		
[(Fecp) ₂ Pt]	Et	Me	Et	15.0	C_6D_6	404	13C	404
[Co(CO) ₃]	Et	Me	Et	30.0	C_6D_6	406	_	
[(Cocp) ₂] ⁺	Me	Н	Et	18.3	CD_2Cl_2	458	_	
$(Cocp)_2[Ni(CO)]_2$	Et	Me	Et	14.8	C_6D_6	459	_	
[(Cocp)NiC ₃ H ₅]	Me	Н	Et	7.6	C_6D_6	403		
[(Cocp)Ni ₃]	Me	Et	Et	34.0	C_6D_6	403	_	
[Nicp]	Et	Me	Et	35.3	C_6D_6	457	_	
[Nicp] ₂	Et	Me	Et	7.0	THF	405	¹³ C	405
[(Cocp)Pt]	Et	Me	Et	38.0	C_6D_6	404	_	
				15.0				
				(bridge)				

 ${\rm TABLE~37~(cont.)}$ $\delta^{11}{\rm B~values~of~some~1,3-diborole-},1,2,5-thiadiborole-~and~1,2-azaborole-~metal~complexes.^*$

Compound				δ ¹¹ Β	Solvent	Ref.	Other nuclei	Ref.
М	R ¹	R ²	R ³					
$\begin{aligned} &[(\text{Nicp})_2\text{Pt}]\\ &[(\text{NiC}_3\text{H}_5)\text{Ni}]\\ &[\text{Ni}(\text{C}_3\text{H}_5)\text{Ni}(\text{C}_3\text{H}_5)_2]\\ &[\text{Pdcp}]\\ &[\text{LPt}]\\ &[\text{LPt}]^2-\end{aligned}$	Et Et Me Et Et	Me Me H Me Me Me	Et Et Me Et Et	13.0 20.7 21.6 37.0 48.0 23.0	C_6D_6 C_6D_6 C_6D_6 C_6D_6 C_6D_6 C_7D_6	404 407 408 409 409 409	13C — ——————————————————————————————————	404 409 409 409
$ M \begin{bmatrix} Et & Et \\ R & S & R \end{bmatrix} $ M	F	,						
[Cr(CO) ₄] [Mo(CO) ₄] {[Mn(CO) ₃][Fecp]} [Fe(CO) ₃] [Fe(CO) ₃] [Cocp] [Ni(CO) ₂] [LCo] ₂	M M M C S M	Me M		33.0 33.3 18.0 27.8 26.5 32.0 26.8 38.3 30.0 14.0 (bridge)	CDCl ₃ CDCl ₃ CS ₂ C ₆ D ₆ CDCl ₃ CDCl ₃ CDCl ₃ C ₆ D ₆ CDCl ₃ C ₅ D ₆ CDCl ₅ CDCl ₅	401 401 402 462 401 401 400 463 464	 	
$ M \left[\begin{array}{c} \bigcirc \\ B \\ N \\ M e \end{array} \right] $ $ M $	R							
[Sn] [LTiCl ₂] [LVCl] [Cr(CO) ₃] ⁻ [Cr(CO) ₃ SnMe ₃] [Mo(CO) ₃] ⁻ [Mo(CO) ₃ PbMe ₃] [W(CO) ₃] ⁻ [W(CO) ₃]	S. Stitle tl tl tl tl tl	Bu iMe ₃ iMe ₃ Bu Bu Bu Bu Bu Bu Bu		31.5 40.9 56.8 19.5 19.4 22.2 22.9 22.4 22.1 19.0	C_7D_8 C_6D_6 THF DMSO- d_6 C_6D_6 Acetone- d_6 C_6D_6 C_6D_6 DMSO- d_6 C_6D_6	427 390 390 387 387 387 387 387 387 392	13C 13C, 119Sn 13C, 207Pb 	387 387 387

TABLE 37 (cont.) δ^{11} B values of some 1,3-diborole-, 1,2,5-thiadiborole- and 1,2-azaborole-metal complexes. a

Compound		δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
M	R					
[LFe]	Et	13.0	C_7D_8	396	_	
$[FeC_6H_6]^+$	tBu	19.0	Acetone-d ₆	389	13C	389
[LRu]	tBu	16.2 14.2	C ₆ D ₆	386		
[LRu]	SiMe ₃	16.0 17.8	C_6D_6	386		
[Co(CO) ₂]	tBu	21.0	C_6D_6	394	13C	394
[Co(COD)]	tBu	18.0	C_6D_6	394	13C	394

TABLE 38 δ^{11} B values of some boron-element(sulphur, nitrogen)-metal complexes.

Compound	δ^{11} B	Solvent	Ref.	Other nuclei	Ref.
[Cr(CO) ₅][MeSBMe ₂]	72.9	C ₆ H ₆	424	_	
[Fe(CO) ₃][(MeS) ₂ BMe]	34.2	C_6H_6	422	_	
[Cr(CO) ₅][(MeS) ₃ B]	20.0	• -	467		
[NiC ₃ H ₅][Me ₂ NBMe ₂]	32.5		466	_	
[Fe(CO) ₃][(Me ₂ N) ₂ BMe]	20.0		466	_	
$[W(CO)_3][(Me_2N)_3B]$	21.2		468		
$[Cr(CO)_3] \begin{bmatrix} tBu \\ N \\ B-Me \\ tBu \end{bmatrix}$	18.3	CDCl ₃	219		
[Cr(CO) ₃][(MeBNMe) ₃]	24.3	C_6D_6	469	14N	469
$[Co_2(CO)_6][tBu=NtBu]$	18.8	CDCl ₃	421	¹³ C	421
[Cr(CO) ₄][(BuB=NtBu) ₂]	16.7	CDCl ₃	420	¹³ C, ¹⁴ N	420
[W(CO)₄][(BuB≡NtBu)₂]	19.5	CDCl ₃	420		

 ^a L = borane as the ligand shown in the preceding formula.
 ^b See Refs 811, 829 for NMR data (¹¹B, ¹³C, ³¹P) of other azaborole complexes and Ref. 833 for other 1,3-diborole complexes.

various reasons not discussed here, the ligating ability of organylboron compounds may be superior to that of their well-known carbon analogues. Several new developments have been reported for borabenzene derivatives. Metal derivatives of the 2-boranaphthalene anion have been prepared. The neutral adducts pyridine–borabenzene and pyridine–2-boranaphthalene are coordinated to metal fragments $M(CO)_3$ (M = Cr, Mo, W). Following work on 1,4-diborabenzene complexes, transition-metal derivatives of 1,3-diborabenzene⁴³⁴ and 1,2-diborabenzene have been prepared (Table 35). The superior of the superior

The most interesting information from ¹¹B NMR concerns the metalboron bond in π complexes. In general, an increase in ¹¹B-nuclear shielding with respect to that of the "free" ligand (or a comparable trigonal borane) has been assumed as evidence for metal-boron bonding interactions. So far, all direct structural information from X-ray analysis in the solid state corroborates this assumption, with very few exceptions. However, a caveat is necessary: the magnitude of the shift differences $\Delta \delta^{11}$ B (with respect to the "free" ligand) should not be viewed as a measure of the metal-boron bond strength. The $\Delta \delta^{11}$ B values depend (i) on the electronic structure of the "free" ligand, (ii) on the electronic structure of the π complex and therefore on the nature of all other ligands and on the oxidation state of the metal, (iii) on the changes in the chemical-shielding anisotropy, $\Delta \sigma$. The first argument (i) is readily recognized by comparing, for example, the δ^{11} B values of the borabenzene anion and its metal complexes $(\Delta \delta^{11} B \approx 2-13 \text{ ppm}, \text{ cf. Table 34})$ with those of alkenylboranes and their metal complexes ($\Delta \delta^{11}$ B $\approx 30-40$ ppm, cf. Table 33). In the case of the second argument (ii), it is appropriate to cite at least two noteworthy exceptions to the "rule" of the low-frequency shift of the borane ligand upon complexation. In the titanium- and vanadium-chloride complexes with the 1,2-azaborolinyl ligand the shielding of the ¹¹B nuclei is reduced with respect to the "free" ligand: 390

$$\begin{pmatrix}
\bigcirc N - SiMe_3 \\
Me
\end{pmatrix}$$

$$\Delta \delta^{11}B = 40.9$$

$$\Delta \delta^{11}B = -11.9$$

$$\Delta \delta^{11}B (ligand) - \delta^{11}B(complex)$$

$$\begin{pmatrix}
\bigcirc N - SiMe_3 \\
Me
\end{pmatrix}$$

$$\Delta C = \frac{1}{N} - \frac{1}{N} = \frac{1}{N} =$$

This high-frequency shift has been attributed to negligible metal-boron bonding interactions. However, it seems more likely, considering the electronic structure of such complexes, 470 that B_0 -induced paramagnetic circulations, involving the formally empty metal 3d orbitals, are responsible.

Thus the changes in the $\delta^{11}B$ values in these complexes remind one of analogous changes in the $\delta^{13}C$ values of corresponding cyclopentadienyl complexes.⁴⁷¹

Finally, the third argument (iii) has been studied by 13 C NMR of π complexes in the solid state, 100 and the results may also apply to 11 B NMR of π complexes. Since values of the principal components of the 11 B-shielding tensor are not available, the interpretation of the isotropic σ values is not straightforward—in particular if a change in the coordination number is involved in addition to other factors.

 $^{11}\mathrm{B}$ resonances in the case of bridging and nonbridging borane ligands in π complexes can be assigned without difficulty. In all cases studied the $^{11}\mathrm{B}$ resonance of the bridging ligand is shifted to lower frequency. This increase in $^{11}\mathrm{B}$ -nuclear shielding may be related to an increase in the coordination number.

C. Indirect nuclear spin-spin couplings ⁿJ(¹¹BX)

Although most of the values $^{n}J(BX)$ are obtained from the X NMR spectra, a brief discussion of general effects is presented in this section.

1. General theory 657-661

The spin-spin-coupling interaction J_{AB} between nuclei A and B is mediated by valence electrons and is a scalar quantity. According to Ramsey's formulation, ⁶⁵⁷ it is decribed by more than one mechanism. It is assumed that the contact term dominates the coupling mechanism and that the spin-orbital and spin-dipole terms are of minor importance. In the case of boron, this assumption appears to be justified for spin-spin coupling to ¹H, ¹¹B, ¹³C, ²⁹Si and ³¹P(v), whereas the treatment of spin-spin coupling to ¹⁵N, ¹⁹F and ³¹P(III) is less simple. For spin-spin coupling to the heavier nucleides like ⁷⁷Se, ¹⁰³Rh, ¹¹⁹Sn, ¹⁹⁵Pt, ²⁰⁵Tl, ²⁰⁷Pb relativistic effects ⁶⁵⁸ may have to be considered in order to get more than a rough qualitative picture. The present account will be limited to a purely qualitative discussion, and for this purpose the formulation of the contacterm in the original approach of Pople and Santry ⁶⁵⁹ is useful:

$$K_{AB} = \frac{4}{9} \mu_0^2 \mu_B^2 \psi_A(O)^2 \psi_B(O)^2 \pi_{AB}, \tag{19}$$

where K is the reduced coupling constant $(K_{AB} = (4\pi^2/h) J_{AB}(\gamma_A \gamma_B)^{-1})$, $\psi_A(O)^2$ and $\psi_B(O)^2$ are the respective valence-s-electron densities at nuclei A and B, π_{AB} is the mutual polarizability of the A and B s orbitals and the other symbols have their usual meaning. The term π_{AB} represents the difference of one-electron energies and controls both the sign and

magnitude of K_{AB} . The introduction of an average excitation energy ΔE leads to the replacement of the term π_{AB} in (19):

$$\pi_{AB} = \Delta E^{-1} P_{S(A) S(B)}^2. \tag{20}$$

This requires that K_{AB} is always >0, and that there is a linear correlation between K_{AB} and the "s character" ($P_{S(A)S(B)}^2$) of the A—B bond. Clearly, this is a very crude picture, and its careful application should be restricted to the discussion of *changes* in the magnitudes of couplings rather than to discussing their absolute values. Furthermore, it should be limited to spin-spin coupling between ¹¹B and nuclei such as ¹H, ¹¹B, ¹³C, ²⁹Si that possess an open s-shell electron configuration.

2. Patterns of couplings "J(11BX)

(a) $J(^{11}B^1H)$ (Table 39). Many values $^1J(^{11}B^1H)$ can be found in the tables for chemical shifts. For a brief survey a few representative data are listed in Table 39 in order to get an impression of the whole range.

TABLE 39 Some selected couplings ${}^{1}J({}^{11}B^{1}H)$.

Compound	¹ J(¹¹ B ¹ H)(Hz)	Ref.
$[C(H)Me_2CMe_2]_2BH$	114	114
F ₂ BH	211	5
ОВ-Н	173	302
SB-H	140	302
Me N B-H Me	130	182
Et ₂ NBH ₂	120	127
[BH ₄]	81.5 ± 1.0	5
H ₃ NBH ₃	98.2 ± 1	556
B_2H_6	133.5 ± 1.0 (terminal) 46.3 ± 0.5 (bridge)	668
$[(H_3N)_2BH_2]^+$	110	5
[(Me3P)2BH2]+	90	5

^a For further data see the relevant Tables and Refs 5-9.

MO calculations have shown that the magnitude of ${}^1J({}^{11}B^{1}H)$ is roughly linearly related to the "s character" of the B—H bond. 662,663 This includes the ${}^{11}B^{-1}H$ coupling in electron deficient B—H—B or B—H—metal bridges. As similar observations apply to ${}^1J({}^{13}C^{1}H)$, correlations between ${}^1J({}^{11}B^{1}H)$ and ${}^1J({}^{13}C^{1}H)$ exist, 663 and they include rather extreme values from carbaboranes. 10,663

For the tetrahedral compounds the model of "rehybridization" ⁶⁶⁴ can be used. In borates or borane adducts, the greater polarity of B—H, or B—element bonds in comparison with C—H or C—element bonds, is expected to induce greater changes in the values of ¹J(¹¹B¹H):

$$^{1}J(^{11}B^{1}H) (Hz) = 81.5$$
 $CH_{3} - BH_{3}^{-} (CH_{3})_{2}BH_{2} (CH_{3})_{3}BH$
 $^{1}J(^{11}B^{1}H) (Hz) = 81.5$ 70.3 66.6 66.6
 $^{1}J(^{13}C^{1}H) (Hz) = 125.0$ 124.9 125.4 125.0
 CH_{4} $CH_{3} - CH_{3}$ $(CH_{3})_{2}CH_{2}$ $(CH_{3})_{3}CH$

(b) $J(^{11}B^{11}B)$, $J(^{205}Tl^{11}B)$ (Table 40). As for the values of $^1J(^{11}B^{11}H)$, the magnitude of $^1J(^{11}B^{11}B)$ corresponding to two-electron two-centre B—B bonds is significantly increased when compared with those for electron deficient multicentre B—B bonds. There are strong indications that changes in $^1J(^{11}B^{11}B)$ are related to the "s character" of the two-centre or the multicentre bond. 662 A positive sign has been determined for $^1J(^{11}B^{11}B)$ in 1-methylpentaborane(9). 513 In general, $^{11}B^{-11}B$ coupling is small between boron atoms bridged by hydrogens. This helps to analyse the B—B connectivity of polyhedral boranes by two-dimensional $^{11}B^{-11}B$ COSY NMR, based on scalar $^{11}B^{-11}B$ coupling.

The shortcomings of this method may be compensated by the use of $^{1}H^{-1}H$ COSY NMR, with ^{11}B decoupling. 667 Experimentally, it has been shown that $^{1}J(^{11}B^{11}B)$ in diborane(6) is 3.8 ± 0.2 Hz. 668 In $nido[Me_{2}TlB_{10}H_{12}]^{-1}$ the magnitudes and relative signs of $^{n}J(^{205}Tl^{11}B)$ have been determined, using one-dimensional and two-dimensional ($^{11}B^{-11}B$ COSY) experiments. 670

(c) ${}^1J({}^{13}C^{11}B)$ (Table 41). A large number of values of ${}^1J({}^{13}C^{11}B)$ have become available in the last decade. In most cases, changes in the magnitude of ${}^1J({}^{13}C^{11}B)$ are related to the "s character" of the B—C bond. For discussed for ${}^1J({}^{11}B^1H)$, the polarizability of the B—C bond is much greater than for the C—C bond. This leads to a greater range of ${}^1J({}^{13}C^{11}B)$ values for similar compounds.

$$[(CH_3)_4B]^ [(CH_3)_3C-BH_3]$$
 $(CH_3)_4C$
 $^1J(^{13}C^{11}B) = 39.5 Hz$ $50.0 Hz$ $^1J(^{13}C^{13}C) = 36.0 Hz$

Compound	¹ J(¹¹ B ¹ B) (Hz)	Ref
B_2Br_4	110	356
$B_2(NMe_2)_4$	75	679
MeN NMe ₂ B-B Cl Cl	120	365
B ₄ Cl ₄	<20	41
B_2H_6	3.8	668
$1-(Cl_2B)B_5H_8$	124	363
$2-(Cl_2B)B_5H_8$	106	364
$1:1'-[B_5H_8]_2$	149	680
$1:2'-[B_5H_8]_2$	115	680
$2:2'-[B_5H_8]_2$	7 9	680
1:2'-[B ₁₀ H ₁₃] ₂	105	681
$2:2'-[1,5-C_2B_3H_4]_2$	137	680
$3:3'-[2,4-C_2B_5H_6]_2$	151	680
B_4H_{10}	20.4[B(1)B(3)]	663
	≥25	684
B_5H_9	19.2	682
1-ClB₅H ₉	23.9	683
$2,3-C_2B_4H_8$	26.6[B(1)B(5)]	685
	$\geq 12.0[B(1)B(4)]$	663
2-CB ₅ H ₉	18.0[B(1)B(4)]	663
	<9.0[B(1)B(3)]	663
$2,4-C_2B_5H_7$	<15.0[B(1)B(5)]	663
	<5.0[B(1)B(3)]	663

TABLE 40
Some representative couplings J(¹¹B¹B).

(d) ${}^{1}J({}^{29}Si^{11}B)$, ${}^{1}J({}^{119}Sn^{11}B)$, ${}^{1}J({}^{207}Pb^{11}B)$ (Table 42). The sign and magnitude of the couplings ${}^{1}J(M^{11}B)$ (M = ${}^{29}Si$, 182 ${}^{119}Sn$, 332 ${}^{207}Pb$ 334) have been determined for the 1,3,2-diazaborolidine derivatives

The ratios of the reduced couplings are close to the respective ratios of the calculated valence-s-electron densities, as expected if (19) is valid. 332,334

^a In the case of equivalent boron atoms the coupling ${}^{1}J({}^{11}B{}^{10}B)$ has been determined: $J({}^{11}B{}^{11}B) = 3J({}^{10}B{}^{10}B)$.

TABLE 41
Some representative couplings J(¹³C¹¹B).

Compound	¹ J(¹³ C ¹¹ B) (Hz)	Ref.
N-B=C	102 ± 5^b	686
Me ₃ B	+45-52	10
Me_2B — CH = CH_2	≥75 (B—C=)	687
$Me_2B-C=C-Me$	≥110 (B—C≡)	524°
Me ₂ BF	≥70	41
Me ₂ BOMe	≥64	205
MeBF ₂	≥95	41
(MeBO) ₃	≥78	41
$MeB(NMe_2)_2$	≥59	204
$MeC \equiv C - B(NMe_2)_2$	≥135	10
CF_3 — $B(NMe_2)_2$	99	218
[Me ₄ B] ⁻	+39.5	513
[Ph ₄ B] ⁻	49.5	10
[(PhC≡C) ₄ B] ⁻	70.0	524
$[C_8H_{14}BH_2]^-$	41.0	41
[BuBH ₃] ⁻	48.0	496
[tBuBh ₃] ⁻	50.0	503
[C ₆ H ₅ CH ₂ BH ₃] [−]	43.3	496
[PhBH ₃] ⁻	56.6	496
[N≡C-BH ₃] ⁻	53.0	505
1-MeB ₅ H ₈	+73.1	513
$1,5-C_2B_3H_5$	18.0	688
$1,3,4,6-Me_4-2,3,4,5-C_4B_2H_2$	\geqslant 81 [BN(1)CH ₃]	689
	≥76 [B(6)CH ₃]	
	≥59 [B(6)C(2,5)]	
	<5[B(1)C(2,3,4,5)]	

^a For more data see Refs 7 and 10.

In particular, for $M = ^{207}Pb$ more data are required for further discussions. In the case of M = Si the comparison between $^1J(^{29}Si^{11}B)$ and $^1J(^{29}Si^{13}C)$ reveals analogous trends:

^b Calculated from $T_{(n_B)}^{Q_{n_B}}$ and the ¹³C linewidth.

^c J. D. Odom, personal communication, cited in Ref. 524.

TABLE 42
Some representative couplings ${}^{1}J(M^{11}B)$ (M = ${}^{29}Si$, ${}^{119}Sn$, ${}^{207}Pb$).

Compound	$^{1}J(M^{11}B)(Hz)$	Ref.
Me ₃ Si—B[N(Me)CH ₂] ₂	97	182
[Me ₃ Si—BH ₃]	74	133
[(Me ₃ Si) ₃ Si—BH ₃]	52.5	123
[(Me ₃ Si) ₄ B] ⁻	48	535
$Me_3Sn-B(NMe_2)_2$	953	332
$Me_3Sn-B[N(Me)CH_2]_2$	930	334
$(Me_3Sn)_2B-NMe_2$	657	133
[Me ₃ Sn—BH ₃]	554	133
[Et₃SnBH₃]-	520	123
$Me_3Pb-B[N(Me)CH_2]_2$	1330	334

TABLE 43

Some representative couplings ¹J(¹⁵N¹¹B).^a

Compound	$^{1}J(^{15}N^{11}B)$ (Hz)	Ref.
N-B≡N-tBu	$70 \pm 4^b (B = N)$	41
Me_2BNH_2	>30	7
MeB(NHMe) ₂	>33	7
B(NHMe) ₃	>45	690
H ₃ N—BH ₃	<3	556
Et ₃ N—BH ₃	>6	556
Me ₃ N—BF ₃ ^c	18.7	599
Me ₃ NBCl ₃ ^c	16.5	599
Me ₃ N—BBr ₃ ^c	15.2	599
Me ₃ N—BI ₃ ^c	12.1	599

^a For more data see Ref. 7.

(e) ${}^{1}J({}^{15}N^{11}B)$ (Table 43). There are very few examples where ${}^{14}N^{-11}B$ spin-spin coupling is resolved (see Table 43). Values of ${}^{1}J({}^{15}N^{11}B)$ have been determined either from the measurement of ${}^{15}N$ -enriched samples, or at natural abundance, using polarization-transfer techniques. A linear correlation has been found between ${}^{1}J({}^{15}N^{11}B)$ and ${}^{1}J({}^{31}P^{11}B)$

^b From ¹⁴N NMR spectra at 90 °C in toluene.

^c ¹⁵N-enriched samples.

for the corresponding amine- and phosphine-boranes, ⁵⁵⁶ indicating that ${}^{1}K({}^{15}N^{11}B) > 0$, as shown for ${}^{1}K({}^{31}P^{11}B)$.

(f) $^{1}J(^{31}P^{11}B)$ (Table 44). The P—B bond is readily recognized in both the ^{11}B and the ^{31}P NMR spectra by the splitting due to $^{1}J(^{31}P^{11}B)$. The values cover a range of approximately 200 Hz, and so far all experimental evidence shows that $^{1}J(^{31}P^{11}B) > 0$. 182,566

The linear correlation between ${}^{1}J({}^{31}P^{11}B)$ and ${}^{1}J({}^{15}N^{11}B)$ for borane adducts⁵⁶⁶ indicates that d-orbital participation in the phosphine-boranes has a negligible influence on the coupling mechanism. The analogous behaviour of ${}^{1}J({}^{31}P^{11}B)$ and ${}^{1}J({}^{15}N^{11}B)$ is no longer observed in the case of trigonal boranes. This is in accord with the different natures of the lone electron pairs on phosphorus and nitrogen respectively.

- (g) $^1J(^{17}O^{11}B)$, $^1J(^{77}Se^{11}B)$. So far, no values of $^1J(^{17}O^{11}B)$ have been reported, although a great number of boron—oxygen compounds have been studied. 117,236,350,436 Attempts at the measurement of the coupling $^1J(^{77}Se^{11}B)$ have shown that its magnitude is small, at least for the compounds studied. 182
- (h) $^1J(^{19}F^{11}B)$ (Table 45). Comparison between $^1J(^{19}F^{11}B)$ and $^1J(^{19}F^{13}C)$ shows that $^1J(^{19}F^{11}B) > 0$ in most compounds; $^1J(^{19}F^{11}B)$ may be of either sign in BF₃ and BF₄, and it may be > 0 in BuBF₃, considering the

TABLE 44
Some representative couplings ¹J(³¹P¹¹B).

Compound	$^{1}J(^{31}P^{11}B)$ (Hz)	Ref.
$Me_2P-B[N(Me)CH_2]_2$	44.5 ^b	182
$[(Et_2P)_4B]^-$	32.2°	534
[H ₂ P—BH ₃] ⁻	29.2	691
H ₃ P—BH ₃	27.0	566
Me ₃ P—BH ₃	59.8 ^b	566
F ₃ P—BH ₃	39.0	566
(MeO) ₃ P—BH ₃	97.2 ^b	566
Me ₃ PBF ₃	180.0	478
Me ₃ P—BCl ₃	166.0	557
$(Me_2P-BH_2)_3$	79.3	692
(Et ₂ P—BCl ₂) ₂	99.5	534

^a For an extensive list of data see Ref. 5.

 $^{^{}b}J(^{31}P^{11}B)>0.$

 $^{^{}c}J(^{31}P^{11}B) = 23.5 \text{ Hz, in diglyme.}^{534}$

Compound	¹ J(¹⁹ F ¹¹ B) (Hz)	Ref.
Me ₂ BF	119	
MeBF ₂	76	180
PhBF ₂	62	178
$CH_2(BF_2)_2$	69	693
BF ₃	14.5	5
Et ₂ NBF ₂	15	5
$(Me_2N)_2BF$	23	182
[BF ₄]-	1	5
Me ₂ S—BF ₃	24	5
H ₃ N—BF ₃	13.9	5
Me ₃ N—BF ₃	14–15	5
Me ₃ NBH ₂ F	88.5	5
Me ₃ N—BHF ₂	71	5
Me ₃ P—BF ₃	50	478

TABLE 45 Some representative couplings ${}^{1}J({}^{19}F^{11}B)$.

change of ${}^{1}J({}^{19}F^{13}C)$ from CF₄ (-259.2 Hz) to R—CF₃ (-163.3 Hz). In the trigonal boranes the trend in the changes in ${}^{1}J({}^{19}F^{11}B)$ corresponds to that found for comparable carbocations; for example

$$\begin{array}{llll} & & Me_2BF & Et_2BF & PhBF_2 \\ {}^1J(^{19}F^{11}B)\,(Hz) = & 122.0 & 125.0 & 58.0 \\ {}^1J(^{19}F^{13}C)\,(Hz) = & 420.0 & 429.1 & 178.2 \\ & Me_2CF^+ & Et_2CF^+ & PhCF_2^+ \end{array}$$

(i) ${}^{1}J(M^{11}B)$ ($M=transition\ metal$). There are very few examples for $M^{-11}B$ spin-spin couplings when M is a transition metal (e.g. $M={}^{103}Rh^{673,674}$). For $M={}^{195}Pt$, values of ${}^{n}J({}^{195}Pt^{11}B)$ have been observed for various complexes in which platinum is connected to a polyhedral borane cluster or is part of the cluster. ${}^{675-678}$

(j) ${}^2J(M^{11}B)$ (through $M \nearrow H \searrow B$ bridges). Spin-spin coupling $M(M^{11}B)$ through an $M \nearrow H \searrow B$ bridge has been observed for various metals M:

cpBe BH₂ H₂B BH₂ Al(BH₄)₃ Sc(BH₄)₃ Zr(BH₄)₄

$$^{2}J(M^{11}B) (Hz) = 3.6^{696} 3.8^{668} 9.0^{698} 15.0^{551} 18.0^{550}$$

^a For further data see Ref. 5.

A relationship between the magnitude of ${}^2J(M^{11}B)$ and the nature of the $M \nearrow H \searrow B$ bridge may be established when a larger set of data becomes available.

IV. NMR OF NUCLEI OTHER THAN 11B AND 1H24,704

NMR measurements of nuclei other than ¹¹B, ¹H are available as indicated in Tables 2–38. In this section attention is drawn to useful applications of multinuclear NMR, and to instructive examples for the combination of NMR methods in the analysis and synthesis of boron compounds.

A. 6Li and 7Li NMR

Although lithium borates are of prime importance in boron chemistry, Li NMR has so far received only scant attention. 137,540,542,694 For future studies 6 Li NMR will be favoured owing to the extremely small quadrupolar moment of the 6 Li isotope. This leads to a relaxation behaviour of the 6 Li nucleus in solution analogous to that of spin $\frac{1}{2}$ nuclei. 695 Thus structural information can be obtained from NOE measurement in appropriate 6 Li- 1 H} experiments. A recent example has been shown for $(Me_2PhSi)_3CB(\mu-H)_3Li(THF)_3$ where 6 Li NOE experiments prove that part of the solid-state structure 541 is retained in solution. 542

B. ⁹Be NMR

Some beryllaboranes have been studied by ^{11}B and ^{9}Be NMR. 696 From this work, new data such as $\delta^{9}Be$, $^{1}J(^{9}Be^{1}H)$ and $J(^{11}B^{9}Be)$ across B—H—Be bridges has become available: 696

$$(C_2H_5)BeH_H$$
 $\delta^9Be = -22.1$, ${}^1J({}^9Be^1H) = 10.2 \text{ Hz}$, $J({}^{11}B^9Be) = 3.6 \text{ Hz}$

C. ¹⁰B, ²⁷Al and ⁷¹Ga NMR

1. 10 B NMR

For some particular applications the measurement of ¹⁰B NMR is of distinct advantage, for example (i) investigation of the reaction mechanism in exchange reactions by using ¹⁰B-enriched reagents ⁶²³ (supporting the

arguments from ¹¹B NMR); (ii) measurement of ¹⁰B-¹¹B spin-spin coupling if the ¹¹B nuclei are isochronous. ^{668,679}

2. 27 Al NMR

An important application of ²⁷Al NMR concerns the question whether the reaction of aluminum halides with boranes(3) leads to adduct formation (equation (21a))^{148,246,360,711} or to abstraction of an appropriate leaving group (equations (21b,c)):^{42,55,56,108,144,256,743}

The former process gives rise to broad resonances (efficient quadrupolar relaxation of the 27 Al nucleus), whereas the latter process leads to sharp 27 Al resonances of $[AlX_3Y]^-$ and—possibly, if $X \neq Y$ —there may be up to five different signals $(AlX_4^-, AlX_3Y^-, AlX_2Y_2^-, AlXY_3^-, AlY_4^-)$.

There are only a few other applications of ²⁷Al NMR; for example monitoring exchange reactions between boronic or borinic esters and LiAlH₄ or Li(EtOAlH₃) respectively, ^{501,507} or recording ²⁷Al NMR spectra if the aluminum is part of the borane structure. ^{265,266}

3. 71 Ga NMR

In principle, ⁷¹Ga NMR can be used for the same purpose as ²⁷Al NMR (although the ⁷¹Ga resonances are much broader) according to (21). ¹⁰⁸

D. 13C NMR 18,471

Nowadays, 13 C NMR is routinely used to characterize boranes whenever possible, and there is no need to stress the general advantage of 13 C NMR for structural assignments. A survey of the literature cited in this review shows that more than 200 boron NMR references contain 13 C NMR data. Examples are novel neutral, anionic and cationic boranes(3), $^{60,68,70,75-77}$, 84,110,139,147,151,162,163,167,227,248,256,257,276,304,305,312,319,323,345,646,705,715,716,720,721,783, 784,787,790,792,795,796,798,799,801,821,823 many π -complexes of boranes 43,59,86,142 ,

 378,379,382,387,389,394,405,409,413,421,427,440,646 and a great number of borane adducts and borates. $^{47,141,173,347,476,492,493,515,522,561,572,579,610,614,615,618,632-637,643,719,760,761,763,764,785,786,788,795,797,802,803,820}$ Of course, only a fraction of these data are crucial for unambiguous structural assignments. Thus this account concentrates on some features which are characteristic for boron compounds.

1. Boron-bonded carbon atoms^{7,10}

One aspect is the broadening of ¹³C resonances of carbon atoms linked to boron as a result of scalar relaxation of the second kind (see Section II.B and Fig. 1 above). There are still numerous publications in which it is simply stated that these resonances were not detected. This is a negligent attitude, since in general very slight modifications (for example lowering the temperature by approx. 30 °C) are sufficient to observe these signals. In our experience, it may just be necessary to point out that the expected resonance is broad in order to stimulate the operator into taking a closer look at the

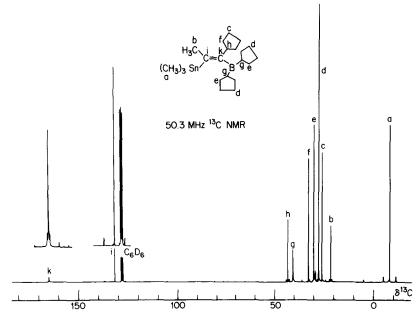


FIG. 2. $50.3 \,\mathrm{MHz}^{13}\mathrm{C}-\{^1\mathrm{H}\}$ NMR of the organoboration product from B(c-C₅H₉)₃ + Me₃Sn—C=C—Me, 1:1 ratio. This is a typical ¹³C NMR spectrum of a medium-sized organoborane; the broadened ¹³C(BC) resonances (g,k) are clearly distinguished and, in this case, ^{117/119}Sn satellites (a,b,h,i,k) also support structural assignments.

spectrum. In any case, these data are slowly accumulating and there are a growing number of studies where the broad resonances of boron-bonded carbon atoms serve as an excellent tool for structural assignment. Figure 2 shows a typical example.

It was realized in early 13 C NMR studies of methylboranes 205 that there is a relation between 11 B nuclear shielding and the δ^{13} C-values of boronbonded carbon atoms.

Of course, these δ^{13} C values change according to substituent effects exerted by other groups in the α , β , γ and δ positions ^{133,143,151,206}. The increase in ¹³C nuclear shielding with increasing electronegativity of the boryl group indicates that changes in the B—C σ bond are responsible for the change in the δ^{13} C values. Therefore this observation corroborates the argument that the energy of the σ -bonding framework is of prime importance in the discussion of the δ^{11} B values of trigonal boranes (see Section III.A.2 and III.B.2 above).

A large number of phenylboranes have been studied by 13 C NMR 10,36,273,707 . The δ^{13} C(1) values of the *ipso*-carbon atoms are affected by influences similar to alkyl carbon atoms. In addition, changes in the electron-density distribution of the whole phenyl ring may have a marked influence. 36,707 With the exception of amino ligands, the changes in δ^{13} C(1) are analogous to those in δ^{13} C(alkyl):

$$\delta^{13}C(1)^{36} = \begin{array}{ccc} PhB(CH_2)_5 & PhBF_2 & PhB(OMe)_2 & PhB(NHMe)_2 \\ \delta^{13}C(1)^{36} = & 140.7 & 124.0 & 131.7 & 140.0^{10} \\ \delta^{11}B^5 = & 77.5 & 25.1 & 28.6 & 30.0 \end{array}$$

It is conceivable that BN(pp) π interactions contribute to the deshielding of the C(1) nucleus. In the case of the mesitylboranes (mes₂BX), where a coplanar arrangement of the mesityl rings with the C₂BX plane is unlikely, the change in the δ^{13} C(1) value is more regular:

BX X = alkyl Ph F OMe NMe₂

$$\delta^{13}C(1) = 142.4^{708} \quad 141.7^{708} \quad 134.3^{709} \quad 136.2^{709} \quad 138.8^{156}$$

$$\delta^{11}B = 84.4 \quad 79.3 \quad 53.0 \quad 51.0 \quad 44.5$$

In borane adducts or organyl borates changes in the ¹³C(BC) resonances remind one closely of the effects observed in the corresponding hydrocarbons or other isostructural compounds (e.g. ammonium or phosphonium salts. ¹⁸

Most 13 C resonances of carbaboranes are also severely broadened by scalar 13 C- 11 B spin-spin interactions. $^{10,43,59,162,429-431,605,689,700-702,723,726,748}$ The range of the δ^{13} C values is fairly large (approximately 80 ppm) and, similarly to the 11 B-nuclear shielding, prediction of the δ^{13} C values is difficult.

2. Carbon atoms removed from boron by two or more bonds

A specific influence of the boron atom upon 13 C resonances of other than B—C carbon atoms has been noted especially for alkenylboranes, 65,69,710,711,714 alkynylboranes 10,524 and phenylboranes 10,36,273,707,712 In the first two classes of compounds an increase in the shielding of boron is connected with the shielding of the β -carbon atom. Although it is tempting to relate this behaviour to significant contributions of VB structures of the types (A) and (B), it is more appropriate to consider the influence of the boryl group upon the energy of σ and π orbitals: 717

$$\begin{array}{ccc}
C - C & & & \\
B - & & \\
(A) & & (B)
\end{array}$$

In the case of phenylethynylboranes, it is clearly shown that the deshielding influence of the boryl group is confined mainly to the β -alkynyl carbon atom, ⁵²⁴ whereas in the corresponding carbocations ⁷¹⁸ a VB-structure like (C) is more reasonable, and this effect is felt also by the ¹³C resonance of the respective *para*-¹³C nucleus:

Me Me
$$C = C = C = C + C$$
Me $C = C = C = C + C$
 $\delta^{13}C (para) = 129.8^{41}$
 $\delta^{13}C (para) = 129.8^{41}$

Assuming that strong deshielding of the $^{13}\text{C}(para)$ resonances in phenyl carbocations is the result of $\overset{+}{\text{CPh}}(pp)\pi$ bonding, the weak $\text{BPh}(pp)\pi$ interactions are indicated by the parallel changes in $\delta^{13}\text{C}(para)$ for isoelectronic compounds. Again it should be emphasized that boryl groups are weak π acceptors. Interestingly, the $^{13}\text{C}(para)$ resonances appear to be a

better indicator for the π -acceptor strength of the boryl group than the ¹¹B resonances. Thus the F₂B group is a stronger π acceptor compared with the (MeO)₂B or (Me₂N)₂B groups, although the δ ¹¹B values suggest the opposite trend: ³⁶

$$F_2B$$
 \longrightarrow $(MeO)_2B$ \longrightarrow $(Me_2N)_2B$ \longrightarrow $\delta^{13}C(\textit{para})$ 136.3 131.1 127.2 $\delta^{11}B = 25.1$ 28.6 32.4

Another way to demonstrate the relative π -acceptor strength of boron is provided by the measurement of the aromatic 13 C resonances of benzanelated heteroborolenes. This shows that the benzene π system competes successfully for the π -electron density of the heteroatoms (O, N), whereas the 11 B resonances deceptively reflect electronic saturation of the boron atoms. 188

Two-dimensional NMR methods are increasingly used for structural assignment. They have also proved useful in organoboron chemistry. 142,725,727,728,732

3. Dynamical ¹³C NMR spectroscopy ⁷²⁹

The simplicity of ^1H -decoupled ^{13}C NMR spectra frequently permits the study of complex dynamical processes in solution. The selection of the following references show that there are applications in many areas of boron chemistry. This comprises conformational equilibria and exchange processes, 45,291,323,490,596,615,722,731,733,734 rotation about σ bonds 730,735,742 or about B—X bonds with assumed BX(pp) π interactions, 22,76,126,133,144 , $^{156,229,323,707,709,721,735-740,742}$ rotation of metal fragments about the axis through the plane of the π ligand, 378,382,415 as well as all kinds of intramolecular rearrangements. 77,99,281,296a,579

E. ²⁹Si, ¹¹⁹Sn and ²⁰⁷Pb NMR

1. 29Si NMR

The first ²⁹Si resonances of *B*-trimethylsilylboranes have been determined by ¹H-{²⁹Si} heteronuclear double resonance. ¹⁸² Later on, the introduction of polarization-transfer techniques such as INEPT and DEPT ¹⁹⁻²¹ has made ²⁹Si NMR more popular. These pulse sequences are easy to apply if the magnitude of a given coupling ⁿJ(²⁹Si ¹H) is known, ²⁹Si NMR spectra, even from diluted reaction solutions, can be obtained in less than 5 min, which means that ²⁹Si NMR is extremely useful for the determination of the product distribution. There are many examples in the literature where ²⁹Si NMR has contributed to the structural characterization of boron compounds.

N-silyl- and B-silyliminoboranes have been studied by ²⁹Si NMR.⁵⁷ The observation of ${}^{1}J({}^{29}\text{Si}^{14}\text{N})$ indicates the peculiar bonding situation that results in a symmetrical charge distribution at the nitrogen atom similar to that in isonitriles or isonitrile complexes.

$$(Me_3Si)_3C$$
—B \Longrightarrow N—SiMe₃
 $\delta^{29}Si = 0.12 -12.2$ $J(^{29}Si^{14}N) = 15 Hz$

The shielding of the $^{29}Si(NSi)$ nucleus is reminiscent of the trend observed for monoalkynyltrimethylsilanes ($\delta^{29}Si=-17$ to -20). Most of the ^{29}Si NMR data for trigonal boranes have been reported for B—Si, 133,182,330,342 S—Si, 199 N—Si, 150,206,228,230,239,241,271,292,309,342,347,369,437,711,730 C—Si 70,71,151 , 342,646,744,745 . Few $\delta^{29}Si$ data are available for borane adducts (N—Si, 476 B—OSi, 608 and carbaboranes (C—Si $^{429-431,835}$ and a cage- $^{29}Si^{430}$, $\delta^{29}Si=-137.9$).

2. 119Sn NMR⁷⁴⁶

Except for the significantly broadened resonances found for Sn—B moieties, 182,133,332,334 119 Sn NMR measurements of tin-containing boron compounds are readily performed. 119 Sn NMR data for various N-stannylaminoboranes have been reported. 268,274,492,748 The majority of 119 Sn NMR data concern the products from the organoboration of alkynylstannanes. $^{66,71,77,111,492,727,728,730,735,744,745,749-757,809}$ The δ^{119} Sn values, together with the linewidths of the 119 Sn resonances, 71 are extremely useful for studying the mechanism 750,754,755 of the organoboration reaction, as well as in the final characterization of the products. Figure 3 shows an example where the structures of different isomers can be assigned on the basis of the 119 Sn linewidths and the δ^{119} Sn values.

Few ¹¹⁹Sn NMR data are available for stannacarbaboranes. ^{429,781}

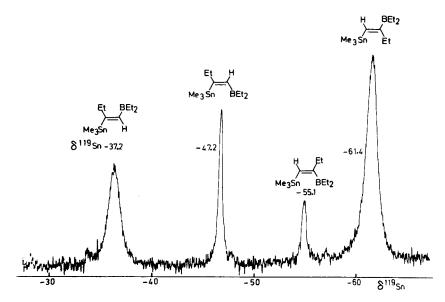


FIG 3. 74.6 MHz ¹¹⁹Sn NMR of a mixture of isomers obtained after UV-irradiation of the pure product (δ^{119} Sn = -55.1). Assignments are based on the δ^{119} Sn values and, in particular, on the different linewidth due to partially relaxed scalar coupling ${}^3J({}^{119}\text{Sn}^{11}\text{B})$ (with ${}^3J({}^{119}\text{Sn}^{11}\text{B})_{rans}|>|{}^3J({}^{119}\text{Sn}^{11}\text{B})_{cis}|$). This is supported by evidence from ${}^{13}\text{C}$ and ${}^{14}\text{NMR}.^{71}$

3. ²⁰⁷Pb NMR

Only a single compound with a Pb—B bond has been studied by $^{1}H-\{^{207}Pb\}$ heteronuclear double resonance: 334 (Me₃PbB[N(Me)CH₂]₂, $\delta^{207}Pb=-362.0$). However, direct measurement of ^{207}Pb NMR provides no problem. A number of organoboration products of alkynylplumbanes has been studied by ^{207}Pb NMR.

F. ^{14}N and ^{15}N NMR 692

Nitrogen NMR has been used much more for the discussion of the bonding situation rather than for characterizing a particular boron compound. This is due to (i) the existence of fairly broad ¹⁴N resonances that, in general, do not allow the resolution of several overlapping resonances, and (ii) the low natural abundance of the ¹⁵N isotope. Furthermore, the ¹⁵N resonances may be severely broadened owing to ¹⁵N-¹¹B scalar spin-spin interactions which significantly reduce the signal-to-noise ratio.

1. 14N NMR

In most cases, $\delta^{14}N$ values of boron-nitrogen compounds containing a single nitrogen atom per molecule or chemically equivalent nitrogen atoms are readily determined. 5,7,57,85,128,132,143,152,248,249,268,298 The linewidth of the ^{14}N resonance reflects, among other variables (some of which may be kept constant), the symmetry of the charge distribution at the quadrupolar ^{14}N nucleus (see equation (2)). In the case of trigonal boranes or amine-borane adducts, this parameter is of some interest. Figure 4 shows the ^{14}N NMR spectrum of 1,2-dimethylimidazole-borane. In addition to the $\delta^{14}N$ values, the different linewidths of the ^{14}N resonances contain important information on the charge distribution (see also the ^{14}N NMR spectrum in Fig. 5).

In the case of iminoboranes (see Table 2) the small linewidths are significant.⁵⁷ They prove the relationship between the electronic structure of iminoboranes and the isoelectronic nitrilium cations:

The $\delta^{14}N$ values of boron-nitrogen compounds reflect the influence of symmetry (as for $\delta^{11}B$ values, see Section III.A.2 above) BN(pp) π interactions^{7,128,152} and steric effects (as for $\delta^{13}C$ of alkanes).

2. 15N NMR

The few applications of ¹⁵N NMR to boron chemistry are promising for future work. Of the polarization-transfer techniques, ¹⁹⁻²¹ the basic INEPT

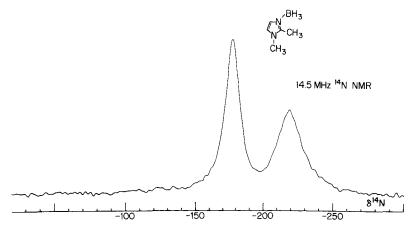


FIG. 4. 14.4 MHz ¹⁴N NMR of 1,2-dimethylimidazole-borane adduct in C_6D_6 (10%). The different ¹⁴N linewidths of the two resonances provide information on the charge distribution at the two ¹⁴N nuclei in the ground state.

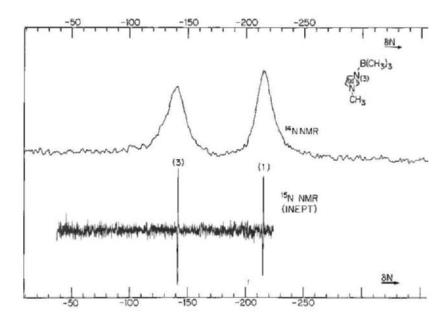


FIG. 5. 14.4 MHz ¹⁴N and 20.8 MHz ¹⁵N NMR spectra of 1-methylimidazole–trimethylborane adduct in C_6D_6 (10%). The ¹⁴N NMR signals are still well resolved and fairly accurate; δ N values can be measured. However, it takes only approximately 1 h to obtain the ¹⁵N NMR spectrum at natural abundance using the basic INEPT sequence. ¹⁹ The ¹⁵N(3) signal is not significantly broadened, which means that the magnitude of $|{}^1J({}^{15}N{}^{11}B)|$ is very small (<5 Hz). ^{476,556}

sequence^{19a} has proved most useful.^{22,476,556} Figure 5 shows an example of this together with the corresponding ¹⁴N NMR spectrum. It is expected that reverse two-dimensional ¹H– $\{^{15}N\}$ measurements⁶⁶⁹ will be of great use for studying boron compounds containing one or more N—H units.

The broadening of ¹⁵N(NB) resonances together with the magnitude of ¹J(¹⁵N¹H) has already been used to distinguish between the following isomers: ⁷¹¹

G. 31P NMR 780

3¹P NMR is routinely measured for boron compounds containing phosphorus. Of course, the wide scope of application of ³¹P NMR does not depend on the presence of the boron. However, there are numerous examples that dependent that ³¹P, ¹¹B and other NMR data are complimentary \$^{7,61,112,149,168,275,323,346,382,519,592,606,607,759,761,764,765,801-803,814}\$ to name just a few references. The presence of a P—B bond is indicated either by the splitting of the ³¹P resonance according to $^{1}J(^{31}P^{11}B)$ or by a distinct broadening due to the efficient relaxation of the ^{11}B nucleus. The absence of broadening may indicate rapid exchange or the absence of any P—B bonding interaction. The $\delta^{31}P$ data fit into the general pattern of $\delta^{31}P$ values. A large range is observed for $\delta^{31}P$ values of monomer phosphinoboranes. Thus the ^{31}P resonance of the monomer tBu₂P—BMe₂ (105 °C) is found at $\delta^{31}P = 51.2$, 171 in contrast with the $\delta^{31}P$ value of Me₂P—B[N(Me)CH₂]₂ ($\delta^{31}P = -129.8$). This reminds one of the analogous trend of δ^{77} Se for MeB(SeMe)₂ and MeSe—B[N(Me)CH₂]₂ (δ^{77} Se = 153.5 and -242.0). Since it is unlikely that BP(pp) π bonding plays an important role, it is again the σ P—B bond that appears to be of importance.

H. ¹⁷O and ⁷⁷Se NMR

1. 17 O NMR

Following the first natural-abundance ¹⁷O NMR measurements of boron-oxygen compounds, ^{117,350} the use of ¹⁷O-enriched compounds has led to the study of complex reactions of boroxines^{264,265} and diboroxanes. ^{264,266} There appears to be a great potential for the elucidation of reaction mechanisms with the help of ¹⁷O NMR and compounds selectively labelled with ¹⁷O. Thus it has been shown that a cyclic aminoborane reacts with oxygen to give selectively a stable peroxide: ²³⁶

$$Et \xrightarrow{B} SiMe_{2} \xrightarrow{O_{2}} Et \xrightarrow{O} O \xrightarrow{B} SiMe_{2}$$

$$Et \xrightarrow{Me} Me$$

$$Et \xrightarrow{Me} Me$$

$$Et \xrightarrow{Me} Me$$

$$Et \xrightarrow{Me} SiMe_{2}$$

$$Et \xrightarrow{Me} Me$$

$$\delta^{17}O = 235.4, 263.3$$

The ¹⁷O-nuclear shielding of oxoboranes(3)^{117,350} decreases with decreasing ¹¹B-nuclear shielding. In the case of boroxines or tetraalkyldiboroxanes, which show δ^{11} B values close to the corresponding

boroxanes, the ¹⁷O-nuclear shielding is further reduced. This may be interpreted as a result of the extended π system. In any case, σ effects are not negligible, as have been demonstrated for $\delta^{13}C(BC)$ values of alkylboranes (see Section IV.D.1 above):

	B(OMe) ₃	EtB(OMe) ₂	Et ₂ B—OMe	$(EtBO)_3$	Et ₂ B—O—BEt ₂
$\delta^{17}O^{350} =$	11.0	50.0	94.041	145.0 ¹¹⁷	223.0
$\delta^{11}R^{5} =$	18.3	31.5	53.6	33.5^{117}	53.0

Figure 6 shows that ¹⁷O NMR may reveal important information on the bonding situation in oxoboranes: ¹¹⁷ exchange between the two oxygens at the carboxyl group is slow on the NMR timescale (in contrast with monocyclic compounds). Clearly this information is difficult to obtain by other methods.

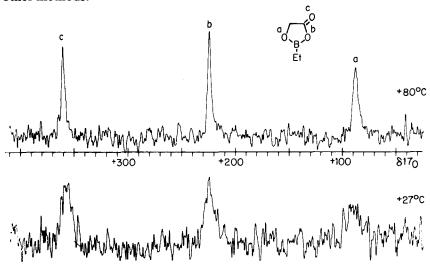


FIG. 6. 27.13 MHz ¹⁷O NMR spectra of 2-ethyl-4-oxo-1,3,2-dioxaborolane ($\sim 60\%$ in C_7D_8); spectrometer time 10 min for each spectrum (acquisition time ≈ 0.06 s, pulse width $\approx 40\,\mu s = 90^\circ$ pulse). The influence of increasing temperature on the quadrupolar relaxation rate is obvious. The spectra prove that the exchange of the oxygen sites b and c is slow when compared with the NMR timescale.

2. ⁷⁷Se NMR

After the first indirect observation of 77 Se resonances of boron-selenium compounds by $^{1}H-\{^{77}\text{Se}\}$ heteronuclear double-resonance experiments 182,205 several direct measurements have been carried out. 41,206,270 The large range of δ^{77} Se values is certainly useful for distinguishing between various selenium-boron compounds.

I. 19F, 35Cl and 37Cl NMR

1. 19F NMR 526,766

Measurements of ¹⁹F NMR are a matter of routine. Compilations of δ^{19} F values and couplings $J(^{19}F^{11}B)$ characterize boron–fluorine compounds. ^{526,766} Frequently, ¹⁹F–¹¹B spin–spin coupling serves to establish the presence of the F—B bond. The following references are cited to give some examples of the application of ¹⁹F NMR to boron chemistry. ^{108,218,275, 283,298,342,453,548,598,600,607,642,758,767–769} Further references can be found in Refs. 5 and 7.

The origin of changes in the δ^{19} F values is poorly understood. There is an increase in ¹⁹F-nuclear shielding as the ¹¹B-nuclear shielding increases. Since this seems to be a general phenomenon for many nuclei linked to boron, irrespective of possible (pp) π interactions, a significant influence of the nature of the σ F—B bond on δ^{19} F is indicated:

$$Me_2B$$
—F $MeBF_2$ BF_3 $(Me_2N)_2B$ —F $[CH_2(Me)N]_2B$ —F $\delta^{19}F^{182} = -21.0 -73.0 -131.0 -134.0 -168.0$
 $\delta^{11}B^5 = 59.0 28.1 11.6 21.8 23.4$

NOE measurements are of importance for structural assignments as shown in the case of ¹H-{¹⁹F} for the benzaldehyde-BF₃ adduct, indicating that the BF₃ is complexed *anti* to the phenyl group. This is confirmed by X-ray crystallography and MNDO calculations: ⁷⁶⁷

$$\delta^{19}F = -150.5 \text{ in } CD_2Cl_2$$

2. 35Cl and 37Cl NMR

Chlorine NMR of fairly small molecules of covalent boron-chlorine compounds gives very broad resonances. ³³⁵ In contrast with δ^{19} F values (for the corresponding fluorides), the ³⁵Cl-nuclear shielding increases slightly from BCl₃ to Me₂BCl and, similarly to δ^{19} F, a marked increase is noted for bis(amino)chloroboranes:

	Me ₂ B—Cl	MeBCl ₂	BCl ₃	$(Me_2N)_2B$ —Cl	$[CH_2(Me)N]_2B$ —Cl
$\delta^{35}\text{Cl}^{335}$	= 244.0	288.0	300.0	162.0	71.0
$\delta^{11}B^5 =$	77.2	62.3	46.5	27.9	26.7

J. NMR of transition-metal nuclei 725

There are a few applications of the NMR of transition-metal nuclei to boron chemistry. For the early transition metals, $^{45}Sc^{551}$ and ^{93}Zr resonances have been observed in $Sc(BH_4)_3$ and $Zr(BH_4)_4$ respectively.

The $\delta^{183}W$ value has been determined for a borane adduct as part of the series of $[cp(CO)_3W-PPh_2-X]$ compounds with a decrease in ^{183}W -nuclear shielding for the sequence $(X = lone pair, BX_3, Me, S, Se)$.

Three studies report δ^{59} Co values; one deals with dicobalt hexacarbonyl- η^2 -alkyne complexes with organometallic ligands, including boryl groups. ⁸⁶ All of the δ^{59} Co values are found in a range of approximately 100 ppm (-2450 ± 50). The others are concerned with π complexes of boranes to the CODCo and the cpCo fragments respectively: ^{770,771}

For the π complex of the 1,2,5-azasilaborole ligand with the cpRh fragment, the ¹⁰³Rh resonance has been determined by ¹H-{¹⁰³Rh} heteronuclear double resonance:

$$\begin{bmatrix} Et & Me \\ cpRhEtB & SiMe_2 \\ Me \end{bmatrix} \delta^{103}Rh = -171.0$$

A number of ¹⁹⁵Pt resonances have been measured for various platinum-containing boron compounds, ^{382,772,773} including borole complexes. ³⁸² In the latter case the δ^{195} Pt data support the arguments of ¹H and ¹³C NMR that boroles may be linked as η^5 or η^3 ligands to platinum depending on the substituents of the borole ring.

ACKNOWLEDGMENTS

I am grateful to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for supporting our research. I should also like to thank my wife for her patience and for the careful typing of the manuscript.

REFERENCES

- R. Köster (ed.), Organobor-Verbindungen I-III, Vol. 13/3a-c, Houben-Weyl, Methoden der Organischen Chemie, Thieme, Stuttgart, 1982-1984.
- 2. H. C. Brown, Organic Synthesis via Boranes, Wiley, New York, 1975.
- 3. (a) W. N. Lipscomb, Acc. Chem. Res., 1973, 6, 257.
 - (b) R. W. Rudolph, Acc. Chem. Res., 1976, 9, 446.
 - (c) W. N. Lipscomb, Angew. Chem., 1977, 89, 685.
- 4. G. R. Eaton and W. N. Lipscomb, NMR Studies of Boron Hydrides and Related Compounds, Benjamin, New York, 1969.
- H. Nöth and B. Wrackmeyer, Nuclear magnetic resonance of boron compounds, in NMR—Basic Principles and Progress (P.Diehl, E. Fluck and R. Kosfeld, eds), Vol. 14, Springer-Verlag, Berlin, 1978.
- 6. L. J. Todd and A. R. Siedle, Prog. NMR Spectrosc., 1979, 13, 87.
- 7. B. Wrackmeyer and R. Köster, in Houben-Weyl, Methoden der Organischen Chemie (R. Köster, ed.), Vol. 13/3c, Thieme, Stuttgart, 1984, pp. 377-611.
- 8. J. D. Kennedy, in Multinuclear NMR (NMR in Inorganic and Organometallic Chemistry) (J. Mason, ed.), Plenum Press, New York, 1987, Chapter 8, 221.
- 9. A. R. Siedle, Ann. Rep. NMR Spectrosc. 1982, 12, 177.
- 10. B. Wrackmeyer, Prog. NMR Spectrosc., 1979, 12, 227.
- 11. H. Nöth and P. Kölle, Chem. Rev., 1985, 85, 399.
- 12. T. Davan and J. A. Morrison, Inorg. Chem., 1986, 25, 2366.
- 13. R. N. Grimes, Adv. Inorg. Chem. Radiochem., 1983, 26, 55.
- 14. (a) R. N. Grimes, Acc. Chem. Res., 1983, 16, 22.
 - (b) N. N. Greenwood, Nova Acta Leopold., 1985, 59, 264, 291.
- 15. W. Siebert, Angew. Chem., 1985, 97, 924; Angew. Chem. Int. Ed. Engl., 1985, 24, 943.
- 16. G. E. Herberich and H. Ohst, Adv. Organomet. Chem., 1986, 25, 199.
- (a) A. Allerhand, A. O. Clouse, R. R. Rietz, T. Roseberry and R. Schaeffer, J. Am. Chem. Soc., 1972, 94, 2445.
 - (b) R. R. Rietz and R. Schaeffer, J. Am. Chem. Soc., 1973, 95, 4580.
 - (c) E. J. Stampf, A. R. Garber, J. D. Odom and P. D. Ellis, Inorg. Chem., 1975, 14, 2446.
 - (d) J. D. Kennedy and N. N. Greenwood, Inorg. Chim. Acta, 1980, 38, 93.
- 18. (a) J. B. Stothers, Carbon-13 NMR, Academic Press, New York, 1972.
 - (b) H.-O. Kalinowski, S. Berger and S. Braun, *NMR Spektroskopie*, Thieme, Stuttgart, 1984.
- 19. (a) G. A. Morris and R. Freeman, J. Am. Chem. Soc., 1979, 101, 760.
 - (b) D. P. Burum and R. R. Ernst, J. Magn. Reson., 1980, 39, 163.
 - (c) G. A. Morris, J. Magn. Reson., 1980, 41, 185.
- (a) D. T. Pegg, D. M. Doddrell, W. M. Brooks and M. R. Bendall, J. Magn. Reson., 1981, 44, 32.
 - (b) O. W. Sørensen and R. R. Ernst, J. Magn. Reson., 1983, 51, 477.
- 21. D. T. Pegg, D. M. Doddrell and M. R. Bendall, J. Chem. Phys., 1982, 77, 2745.
- 22. B. Wrackmeyer, Z. Naturforsch., 1986, 41b, 59.
- 23. D. Shaw, Fourier Transform N.M.R. Spectroscopy, Elsvier, Amsterdam, 1984.
- R. K. Harris and B. E. Mann (eds), NMR and the Periodic Table, Academic Press, New York, 1978.
- 25. A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, 1961.
- 26. V. Mlynarik, Prog. NMR Spectrosc., 1986, 18, 277.
- 27. R. Köster, H. J. Horstschäfer and P. Binger, Liebigs Ann. Chem., 1986, 717, 1.
- 28. R. Goetze and H. Nöth, J. Organomet. Chem., 1978, 145, 151.

- 29. T. Renk, W. Ruf and W. Siebert, J. Organomet. Chem., 1976, 120, 1.
- 30. G. E. Herberich, E. Bauer, J. Hengesbach, U. Kölle, G. Huttner and H. Lorenz, *Chem. Ber.*, 1977, 110, 760.
- 31. G. Menz and B. Wrackmeyer, Z. Naturforsch., 1977, 32b, 1400.
- 32. P. Jutzi, Angew. Chem., 1972, 84, 28; Angew. Chem. Int. Ed. Engl., 1972, 11, 53.
- 33. N. M. D. Brown, F. Davidson and J. W. Wilson, J. Organomet. Chem., 1980, 185, 277.
- 34. A. T. Jeffries and A. T. Parkanyi, J. Phys. Chem., 1976, 80, 287.
- 35. B. Wrackmeyer and H. Nöth, Chem. Ber., 1976, 109, 1075.
- J. D. Odom, T. F. Moore, R. Goetze, H. Nöth and B. Wrackmeyer, J. Organomet. Chem., 1979, 173, 15.
- 37. E. J. Stampf and J. D. Odom, J. Organomet. Chem., 1977, 131, 171.
- 38. B. Wrackmeyer, Z. Naturforsch, 1980, 35b, 439.
- B. M. Mikhailov, T. A. Shchegoleva, E. M. Shashkova and V. G. Kiselev, Izvest. Akad. Nauk SSSR Ser. Khim., 1977, 894.
- 40. B. M. Mikhailov and V. A. Dorokhov, Izvest. Akad. Nauk SSSR Ser. Khim., 1973, 2165.
- 41. B. Wrackmeyer, Unpublished results.
- 42. H. Nöth, R. Staudigl and H.-U. Wagner, Inorg. Chem., 1982, 21, 706.
- M. Hildenbrand, H. Pritzkow, U. Zenneck and W. Siebert, Angew. Chem., 1984, 96, 371;
 Angew. Chem. Int. Ed. Engl., 1984, 23, 371.
- 44. J.-P. Costes, G. Cros and J.-P Laurent, Org. Magn. Reson., 1977, 9, 703.
- M. E. Gursky, A. S. Shashkov and B. M. Mikhailov, J. Organomet. Chem., 1980, 199, 171.
- 46. R. Contreras and B. Wrackmeyer, Z. Naturforsch., 1980, 35b, 1236.
- 47. H. C. Brown and J. A. Soderquist, J. Org. Chem., 1980, 45, 846.
- 48. R. Contreras and B. Wrackmeyer, J. Organomet. Chem., 1981, 205, 15.
- 49. P. Paetzold and C. von Plotho, Chem. Ber., 1982, 115, 2819.
- 50. H. Nöth and S. Weber, Z. Naturforsch., 1983, 38b, 1460.
- 51. H. C. Brown, D. Basavalah and N. G. Bhat, Organometallics, 1983, 2, 1468.
- 52. P. Paetzold, A. Richter, T. Thijsen and S. Würtemberg, Chem. Ber., 1979, 112, 3811.
- P. Paetzold, C. von Plotho, G. Schmid, R. Boese, B. Schrader, D. Bougeard, U. Pfeiffer, R. Gleiter and W. Schäfer, Chem. Ber., 1984, 117, 1089.
- P. v. R. Schleyer, P. H.M. Budzelaar, D. Kremer and E. Kraka, Angew, Chem., 1984, 96, 374; Angew. Chem. Int. Ed. Engl., 1984, 23, 374.
- 55. H. Nöth, B. Rasthofer and S. Weber, Z. Naturforsch., 1984, 39b, 1058.
- 56. R. Staudigl, Dissertation, Universität München, 1981.
- M. Haase and U. Klingebiel, Angew. Chem., 1985, 97, 335; Angew. Chem. Int. Ed. Engl., 1985, 24, 324.
- B. Glaser and H. Nöth, Angew. Chem., 1985, 97, 424; Angew. Chem. Int. Ed. Engl., 1985, 24, 416.
- M. Hildenbrand, H. Pritzkow and W. Siebert, Angew. Chem., 1985, 97, 769; Angew. Chem. Int. Ed. Engl., 1985, 24, 759.
- A. J. Ashe, S. T. Abu-Orabi, O. Eisenstein and H. F. Sandford, J. Org. Chem., 1983, 48, 901.
- H. J. Bestmann and T. Arenz, Angew. Chem., 1984, 96, 363; Angew. Chem. Int. Ed. Engl., 1984, 24, 381.
- C. Eaborn, M. N. A. El-Kheli, P. B. Hitchcock and J. D. Smith, J. Organomet. Chem., 1984, 272, 1.
- 63. J. J. Eisch, J. E. Galle and S. Kozima, J. Am. Chem. Soc., 1986, 108, 379.
- 64. A. J. Ashe, E. Meyers, P. Shu and T. von Lehman, J. Am. Chem. Soc., 1975, 97, 6865.
- 65. H.-O. Berger, H. Nöth and B. Wrackmeyer, Chem. Ber., 1979, 112, 2866.

- 66. B. Wrackmeyer, Rev. Silicon, Germanium, Tin, Lead Compds, 1982, 6, 75.
- G. E. Herberich, B. Buller, B. Hessner and W. Oschmann, J. Organomet. Chem., 1980, 195, 253.
- C. Pues and A. Berndt, Angew. Chem., 1984, 96, 306; Angew. Chem. Int. Ed. Engl., 1984, 23, 313.
- 69. L. W. Hall, J. D. Odom and P. D. Ellis, J. Am. Chem. Soc., 1975, 97, 4527.
- N. S. Hosmane, N. N. Sirmokadam and M. N. Mollenhauer, J. Organomet. Chem., 1985, 279, 359.
- 71. B. Wrackmeyer, Polyhedron, 1986, 5, 1709.
- R. Köster, H. J. Horstschäfer, P. Binger and P. K. Mattschei, Liebigs Ann. Chem., 1975, 1339.
- 73. M. P. Brown, A. K. Holliday and G. Way, J. Chem. Soc. Dalton Trans., 1975, 148.
- R. Köster, G. Seidel and B. Wrackmeyer, Angew. Chem., 1985, 97, 317; Angew. Chem. Int. Ed. Engl., 1985, 24, 326.
- R. Wehrmann, H. Klusik and A. Berndt, Angew. Chem., 1984, 96, 369; Angew. Chem. Int. Ed. Engl., 1984, 23, 369.
- 76. M. V. Garad and J. W. Wilson, J. Chem. Res. (S), 1982, 132.
- 77. B. Wrackmeyer, Organometallics, 1984, 3, 1.
- 78. P. Jutzi and A. Seufert, J. Organomet. Chem., 1979, 169, 373.
- 79. M. V. Garad, A. Pelter, B. Singaram and J. W. Wilson, Tetrahedron Lett., 1983, 637.
- 80. A. J. Ashe and P. Shu, J. Am. Chem. Soc., 1971, 93, 1804.
- 81. G. E. Herberich. H. J. Becker and C. Engelke, J. Organomet. Chem., 1978, 153, 265.
- 82. G. E. Herberich, B. Hessner and D. Söhnen, J. Organomet. Chem., 1982, 233, C35.
- 83. G. E. Herberich, B. Hessner and D. Söhnen, J. Organomet. Chem., 1983, 256, C23.
- 84. G. E. Herberich and B. Hessner, J. Organomet. Chem., 1978, 161, C36.
- 85. B. Wrackmeyer and H. Nöth, Chem. Ber., 1977, 110, 1086.
- 86. P. Galow, A. Sebald and B. Wrackmeyer, J. Organomet. Chem., 1983, 259, 253.
- 87. H. C. Brown and J. A. Sinclair, J. Organomet. Chem., 1977, 131, 163.
- 88. N. F. Ramsey, Phys. Rev., 1950, 78, 689.
- 89. (a) J. A. Pople, Discuss. Faraday Soc., 1962, 34, 7.
 - (b) J. A. Pople, J. Chem. Phys., 1962, 37, 60.
 - (c) J. A. Pople, Mol. Phys., 1964, 7, 301.
- 90. M. Mehring, High Resolution NMR in Solids, Springer-Verlag, Berlin, 1983.
- A. J. Beeler, P. Cutts, A. Orendt, D. M. Grant, J. Michl, K. W. Zilm, J. W. Downing, J. C. Facelli, M. Schindler and W. J. Kutzelnigg, J. Am. Chem. Soc., 1984, 106, 7672.
- 92. K. W. Zilm, R. T. Conlin, D. M. Grant and J. Michl, J. Am. Chem. Soc., 1980, 102, 6672.
- 93. K. A. K. Ebraheem and G. A. Webb, Org. Magn. Reson., 1977, 10, 258.
- 94. J. L. Hubbard and G. W. Kramer, J. Organomet. Chem., 1978, 156, 81.
- 95. S. Hermanek, V. Gregov, B. Stibr, J. Plesek, Z. Janousek and V. A. Antonovich, Collect. Czech. Chem. Commun., 1976, 41, 1492.
- R. E. Williams, Progress in Boron Chemistry (R. J. Brotherton and H. Steinberg, eds), Vol. 2, Pergamon, Oxford, 1970.
- 97. S. Hermanek and J. Plesek, Z. Anorg. Allg. Chem., 1974, 409, 115.
- 98. F. Teixidor, C. Vinas and R. W. Rudolph, Inorg. Chem., 1986, 25, 3339.
- H. Klusik and A. Berndt, Angew. Chem., 1983, 95, 895; Angew. Chem. Int. Ed. Engl., 1983, 22, 877.
- (a) M. M. Maricq, J. S. Waugh, J. L. Fletcher and M. J. M. McGlinchey, J. Am. Chem. Soc., 1978, 100, 6902.
 - (b) D. E. Wemmer and A. Pines, J. Am. Chem. Soc., 1981, 103, 34.
- W. Siebert and W. Rothermel, Ang. Chem., 1977, 89, 346; Angew. Chem. Int. Ed. Engl., 1977, 16, 333.

- 102. A. Berndt and B. Wrackmeyer, Unpublished results, 1985.
- P. H. M. Budzelaar, P. von R. Schleyer and K. Krogh-Jespersen, Angew. Chem., 1984,
 96, 809; Angew. Chem. Int. Ed. Engl., 1984, 23, 825.
- 104. T. Vladimiroff and E. R. Malinowski, J. Chem. Phys., 1967, 46, 1830.
- 105. B. F. Spielvogel, W. R. Nutt and R. A. Izydore, J. Am. Chem. Soc., 1975, 97, 1609.
- 106. (a) J. Kroner, D. Nölle and H. Nöth, Z. Naturforsch., 1973, 28b, 416.
 - (b) J. Kroner, D. Nölle, H. Nöth and W. Winterstein, Z. Naturforsch., 1974, 29b, 476.
- 107. H. Nöth and H. Vahrenkamp, Chem. Ber., 1966, 99, 1049.
- 108. H. Nöth and B. Rasthofer, Chem. Ber., 1986, 119, 2075.
- 109. M. Armbrecht and A. Meller, J. Organomet. Chem., 1986, 311, 1.
- G. Schmidt, G. Baum, W. Massa and A. Berndt, Angew. Chem., 1986, 98, 1123; Angew. Chem. Int. Ed. Engl., 1986, 25, 1111.
- 111. L Killian and B. Wrackmeyer, J. Organomet. Chem., 1977, 132, 213.
- 112. H.-O. Berger and H. Nöth, J. Organomet. Chem., 1983, 250, 33.
- 113. C. Habben, W. Maringgele and A. Meller, Z. Naturforsch., 1982, 37b, 43.
- 114. R. Contreras and B. Wrackmeyer, Spectrochim. Acta, 1982, A38, 941.
- 115. I. Kronawitter and H. Nöth, Chem. Ber., 1972, 105, 242.
- 116. W. Tenzl and R. Köster, Inorg. Synth., 1983, 22, 188.
- 117. B. Wrackmeyer and R. Köster, Chem. Ber., 1982, 115, 2022.
- 118. H. Prigge, Dissertation, Universität München, 1983.
- 119. C. S. Cundy and H. Nöth, J. Organomet. Chem., 1971, 30, 135.
- J. D. Odom, A. J. Zozulin, S. A. Johnston, J. R. Durig, S. Riethmiller and E. J. Stampf, J. Organomet. Chem., 1980, 201, 351.
- 121. H. Vahrenkamp, J. Organomet. Chem., 1971, 28, 167.
- 122. V. A. Dorokhov, O. G. Boldyreva and B. M. Mikhailov, Izv. Akad. Nauk SSSR, 1971, 191.
- 123. W. Biffar, Dissertation, Universität München, 1981.
- 124. U. Schuchardt, Dissertation, Universität München, 1973.
- 125. F. Davidson and J. W. Wilson, J. Organomet. Chem., 1981, 204, 147.
- 126. R. I. Baxter, R. J. M. Sands and J. W. Wilson, J. Chem. Res. (S), 1983, 94.
- 127. H. Nöth and H. Vahrenkamp, Chem. Ber., 1967, 100, 3353.
- 128. W. Becker, W. Beck, H. Nöth and B. Wrackmeyer, Chem. Ber., 1972, 105, 2883.
- 129. J. Casanova and M. Geisel, Inorg. Chem., 1974, 13, 2783.
- 130. H. Nöth, Chem. Ber., 1971, 104, 558.
- 131. H. Nöth and W. Storch, Chem. Ber., 1977, 110, 2607.
- 132. H. Nöth, W. Tinhof and B. Wrackmeyer, Chem. Ber., 1974, 107, 518.
- 133. W. Biffar, H. Nöth, H. Pommerening, R. Schwerthöffer, W. Storch and B. Wrackmeyer, *Chem. Ber.*, 1981, **114**, 49.
- 134. H. Nöth and H. Vahrenkamp, J. Organomet. Chem., 1969, 16, 357.
- 135. W. Storch and H. Nöth, Chem. Ber., 1977, 110, 1636.
- 136. H. Fußstetter, R. Kroll and H. Nöth, Chem. Ber., 1977, 110, 3829.
- 137. H. Nöth, H. Prigge and A.-R. Rotsch, Chem. Ber., 1986, 119, 1361.
- 138. C. K. Narula and H. Nöth, J. Organomet. Chem., 1985, 281, 131.
- R. Boese, N. Finke, J. Henkelmann, G. Maier, P. Paetzold, H. P. Reisenauer and G. Schmid, Chem. Ber., 1985, 118, 1644.
- 140. H. C. Brown, D. Basavaiah and N. G. Bhat, Organometallics, 1983, 2, 1309.
- 141. H. E. Katz, J. Org. Chem., 1985, 50, 5027.
- 142. P. Paetzold, N. Finke, P. Wennek, G. Schmid and R. Boese, Z. Naturforsch., 1986, 41b, 167.
- 143. H. Nöth and H. Prigge, Chem. Ber., 1986, 119, 338.
- 144. P. Kölle and H. Nöth, Chem. Ber., 1986, 119, 313.

- 145. U. Höbel, H. Nöth and H. Prigge, Chem. Ber., 1986, 119,. 325.
- 146. P. J. Domaille, J. D. Druliner, L. W. Gosser, J. M. Read, E. R. Schmelzer and W. R. Stevens, J. Org. Chem., 1985, 50, 189.
- 147. P. Paetzold, K. Delpy, R. P. Hughes and W. A. Herrmann, Chem. Ber., 1985, 118, 1724.
- 148. K. Anton, P. Konrad and H. Nöth, Chem. Ber., 1984, 117, 863.
- 149. H. Nöth and W. Storch, Chem. Ber., 1984, 117, 2140.
- 150. C. Habben and A. Meller, Chem. Ber., 1984, 117, 2531.
- R. Wehrmann, H. Meyer and A. Berndt, Angew. Chem., 1985, 97, 779; Angew. Chem. Int. Ed. Engl., 1985, 24, 788.
- 152. H. Nöth and B. Wrackmeyer, Chem. Ber., 1973, 106, 1145.
- 153. H. Nöth and B. Wrackmeyer, Chem. Ber., 1981, 114, 1150.
- 154. H. Nöth and R. Staudigl, Z. Anorg. Allg. Chem., 1981, 481, 41.
- 155. R. Köster and G. Seidel, Liebigs Ann. Chem., 1977, 1837.
- 156. N. M. D. Brown, F. Davidson and J. W. Wilson, J. Organomet. Chem., 1980, 192, 133.
- F. A. Davis, M. J. S. Dewar, R. Jones and S. D. Worley, J. Am. Chem. Soc., 1969, 91, 2094.
- S. Amirkhalili, R. Boese, U. Höhner, D. Kampmann, G. Schmid and P. Rademacher, Chem. Ber., 1982, 115, 732.
- 159. H. Fußstetter and H. Nöth, Liebigs Ann. Chem., 1981, 633.
- 160. R. Köster and G. Seidel, Inorg. Synth., 1983, 22, 185.
- 161. G. W. Herberich and H. Ohst, Z. Naturforsch., 1983, 38b, 1388.
- G. E. Herberich, H. Ohst and H. Mayer, Angew. Chem., 1984, 96, 975; Angew. Chem. Int. Ed. Engl., 1984, 23, 969.
- 163. H. Klusik, C. Pues and A. Berndt, Z. Naturforsch., 1984, 39b, 1042.
- 164. H. Nöth and H. Pommerening, Chem. Ber., 1981, 114, 3044.
- K. Schlüter and A. Berndt, Angew. Chem., 1980, 92, 64; Angew. Chem. Int. Ed. Engl., 1980, 19, 57.
- W. Biffar, H. Nöth and H. Pommerening, Angew. Chem., 1980, 92, 63; Angew. Chem. Int. Ed. Engl., 1980, 19, 56.
- F. Dirschl, E. Hanecker, H. Nöth, W. Rattay and W. Wagner, Z. Naturforsch., 1986, 41b, 32.
- 168. W. Jacksties, H. Nöth and W. Storch, Chem. Ber., 1985, 118, 2030.
- 169. H. Nöth and S. Weber, Chem. Ber., 1986, 118, 2554.
- 170. H. Nöth and S. Weber, Chem. Ber., 1984, 116, 2144.
- 171. E. Sattler, Personal communication, 1985.
- 172. R. Goetze and H. Nöth, Z. Naturforsch., 1975, 30b, 875.
- 173. M. A. Sens, J. D. Odom and M. H. Goodrow, Inorg. Chem., 1976, 15, 2825.
- 174. B. Pachaly and R. West, Angew. Chem., 1984, 96, 444; Angew. Chem. Int. Ed. Engl., 1984, 23, 454.
- 175. H. Nöth, H. Schäfer and G. Schmid, Z. Naturforsch., 1971, 26b, 497.
- 176. A. A. Cheremisin and P. V. Schastnev, J. Magn. Reson., 1980, 40, 459.
- 177. A. H. Cowley and T. A. Furtsch, J. Am. Chem. Soc., 1969, 91, 39.
- 178. S. S. Krishnamurthy, M. F. Lappert and J. B. Pedley, J. Chem. Soc. Dalton Trans., 1975, 1214.
- 179. C. D. Good und D. M. Ritter, J. Am. Chem. Soc., 1962, 84, 1162.
- 180. H. Nöth and H. Vahrenkamp, J. Organomet. Chem., 1968, 11, 399.
- 181. W. Haubold und J. Weidlein, Z. Anorg. Allg. Chem., 1976, 420, 251.
- H. Fußstetter, H. Nöth, B. Wrackmeyer and W. McFarlane, Chem. Ber., 1977, 110, 3172.
- 183. W. G. Woods and P. L. Strong, J. Organomet. Chem., 1967, 7, 371.

- C. Eaborn, M. N. El-Kheli, N. Retta and J. D. Smith, J. Organomet. Chem., 1983, 249, 23.
- 185. W. V. Dahlhoff and R. Köster, Liebigs Ann. Chem., 1975, 1625.
- 186. L. Barton and J. M. Cramp, Inorg. Chem., 1973, 12, 2252.
- 187. R. H. Cragg and J. C. Lockhart, J. Organomet. Chem., 1969, 31, 2282.
- R. Goetze, H. Nöth, H. Pommerening, D. Sedlak and B. Wrackmeyer, Chem. Ber., 1981, 114, 1884.
- 189. F. A. Davis, M. J. S. Dewar and R. Jones, J. Am. Chem. Soc., 1968, 90, 706.
- 190. H. C. Brown and T. E. Coole, Organometallics, 1985, 4, 816.
- 191. H. Vahrenkamp, Dissertation, Universität München, 1967.
- 192. P. Paetzold, Unpublished results, 1975.
- 193. H. C. Brown and T. E. Coole, Organometallics, 1983, 2, 1316.
- 194. W. Siebert, U. Ender and R. Schütze, Z. Naturforsch., 1985, 40b, 996.
- 195. G. W. Kabalka, U. Sastry, K. A. R. Sastry, F. F. Knapp and P. C. Srivastava, J. Organomet. Chem., 1983, 259, 269.
- 196. H. C. Brown, N. G. Bhat and V. Somayaji, Organometallics, 1983, 2, 1311.
- 197. H. Nöth and U. Schuchardt, Chem. Ber., 1974, 107, 3104.
- 198. A. Haas and M. Häberlein, Z. Anorg. Allg. Chem., 1976, 427, 97.
- 199. K. Hennemuth, A. Meller and M. Wojnowska, Z. Anorg. Allg. Chem., 1982, 489, 47.
- 200. R. Goetze and H. Nöth, Z. Naturforsch, 1980, 35b, 1212.
- 201. M. Schmidt and W. Siebert, Chem. Ber., 1969, 102, 2752.
- 202. R. Schwerthöffer, Dissertation, Universität München, 1974.
- 203. W. Haubold and U. Kraatz, Chem. Ber., 1979, 112, 1083.
- 204. E. F. Mooney and M. G. Anderson, Ann. Rep. NMR Spectrosc., 1969, 2, 219.
- 205. W. McFarlane, B. Wrackmeyer and H. Nöth, Chem. Ber., 1975, 105, 3831.
- 206. C. Habben and A. Meller, Chem. Ber., 1986, 119, 9.
- 207. (a) C. Habben, W. Maringgele and A. Meller, Z. Naturforsch., 1982, 37b, 43.
 - (b) M. Noltemeyer, G. M. Sheldrick, C. Habben and A. Meller, Z. Naturforsch., 1983, 38b, 1182.
- 208. W. Storch, Dissertation, Universität München, 1974.
- 209. E. F. Rothgery, P. J. Busse and K. Niedenzu, *Inorg. Chem.*, 1971, 10, 2243.
- L. Weber and G. Schmid, Angew. Chem., 1974, 86, 519; Angew. Chem. Int. Ed. Engl., 1974, 13, 467.
- 211. K. Niedenzu and J. S. Merriam, Z. Anorg. Allg. Chem., 1974, 406, 251.
- 212. H. Fußstetter, Dissertation, Universität München, 1977.
- 213. H. Nöth and W. Storch, Chem. Ber., 1976, 109, 884.
- E. B. Bradley, R. H. Herber, P. J. Busse and K. Niedenzu, J. Organomet. Chem., 1973, 52, 297.
- F. A. Davis, I. J. Turchi, B. E. Maryanoff and R. O. Hutchins, J. Org. Chem., 1972, 37, 1583.
- 216. J. B. Leach and J. H. Morris, J. Organomet. Chem., 1969, 13, 313.
- 217. P. Paetzold and R. Truppat, Chem. Ber., 1983, 116, 1531.
- 218. H. Bürger, M. Grunwald and G. Pawelke, J. Fluor. Chem., 1986, 31, 89.
- G. Schmid and J. Schulze, Angew. Chem., 1977, 89, 258; Angew. Chem. Int. Ed. Engl., 1977, 16, 249.
- 220. K. Nölle, H. Nöth and W. Winterstein, Z. Anorg. Allg. Chem., 1974, 406, 235.
- 221. D. Nölle and H. Nöth, Chem. Ber., 1978, 111, 469.
- 222. H. Nöth, W. Winterstein, W. Kaim and H. Bock, Chem. Ber., 1979, 112, 2494.
- 223. K. Barlos and H. Nöth, Z. Naturforsch., 1980, 35b, 407.
- 224. P. Paetzold, C. von Plotho, E. Niecke and R. Rüger, Chem. Ber., 1983, 116, 1678.

- 225. P. Paetzold and T. von Bennigsen-Mackiewicz, Chem. Ber., 1981, 114, 298.
- W. Storch, W. Jackstiess, H. Nöth and G. Winter, Angew. Chem., 1977, 89, 494; Angew. Chem. Int. Ed. Engl., 1977, 16, 478.
- T. Franz, E. Hanecker, H. Nöth, W. Stöcker, W. Storch and G. Winter, *Chem. Ber.*, 1986, 119, 900.
- 228. H.-A. Steuer, A. Meller and G. Elter, J. Organomet. Chem., 1985, 295, 1.
- M. Armbrecht, W. Maringgele, A. Meller, M. Noltemeyer and G. M. Sheldrick, Z. Naturforsch., 1985, 40b, 1113.
- 230. A. Meller and M. Armbrecht, Chem. Ber., 1986, 119, 1.
- F. Kumpfmüller, D. Nölle, H. Nöth, H. Pommerening and R. Staudigl, Chem. Ber., 1985, 118, 483.
- 232. W. Maringgele, J. Organomet. Chem., 1981, 222, 17.
- 233. J. Bielawski, K. Niedenzu and J. S. Stewart, Z. Naturforsch., 1985, 40b, 389.
- 234. P. Paetzold, C. von Plotho, H. Schwan and H.-U. Meier, Z. Naturforsch., 1984, 39b, 610.
- B. M. Mikhailov, V. A. Dorokhov, N. V. Mostovi, O. G. Boldyreva and M. N. Bochkareva, Zh. Obshch. Chim., 1970, 40, 1817.
- R. Köster and G. Seidel, Angew. Chem., 1984, 96, 146; Angew. Chem. Int. Ed. Engl., 1984, 23, 155.
- 237. D. Nölle and H. Nöth, Z. Naturforsch., 1972, 27b, 1425.
- 238. K. Barlos, D. Nölle and H. Nöth, Z. Naturforsch., 1977, 32b, 1005.
- 239. R. Oesterle, W. Maringgele and A. Meller, J. Organomet. Chem., 1985, 284, 281.
- 240. J. Bielawski and K. Niedenzu, Synth. React. Inorg. Met.-Org. Chem., 1980, 10, 479.
- C. Habben, A. Meller, M. Noltemeyer and G. M. Sheldrick, J. Organomet. Chem., 1985, 288, 1.
- 242. C. Habben and A. Meller, Z. Naturforsch., 1984, 39b, 1022.
- 243. W. Siebert, R. Full, J. Edwin and K. Kinberger, Chem. Ber., 1978, 111, 823.
- 244. H. Nöth and R. Staudigl, Chem. Ber., 1982, 115, 1555.
- 245. K. Anton, H. Nöth and H. Pommerening, Chem. Ber., 1984, 117, 2479.
- 246. K. Anton, C. Euringer and H. Nöth, Chem. Ber., 1984, 117, 1222.
- 247. M. F. Hawthorne, J. Am. Chem. Soc., 1961, 83, 833.
- 248. P. Paetzold, C. von Plotho, G. Schmid and R. Boese, Z. Naturforsch., 1984, 39h, 1069.
- 249. B. Wrackmeyer and H. Nöth, Chem. Ber., 1976, 109, 3480.
- 250. P. Fritz, K. Niedenzu and J. W. Dawson, Inorg. Chem., 1964, 3, 626.
- 251. K. Anton, H. Fußstetter and H. Nöth, Chem. Ber., 1981, 114, 2723.
- 252. K. Delpy, H.-U. Meier, P. Paetzold and C. von Plotho, Z. Naturforsch., 1984, 39b, 1696.
- 253. J. Kroner, H. Nöth and K. Niedenzu, J. Organomet. Chem., 1974, 71, 165.
- M. F. Lappert, M. R. Litzow, J. B. Pedley and A. Tweedale, J. Chem. Soc. (A), 1971, 2426.
- 255. G. Waltl, Dissertation, Universität München, 1982.
- 256. C. K. Narula and H. Nöth, Inorg. Chem., 1985, 24, 2532.
- 257. J. A. Soderquist and M. R. Najafi, J. Org. Chem., 1986, 51, 1330.
- 258. H. Nöth and W. Rattay, J. Organomet. Chem., 1986, 312, 139.
- D. Männig, H. Nöth, H. Prigge, A.-R. Rotsch, S. Gopinathan and J. W. Wilson, J. Organomet. Chem., 1986, 310, 1.
- 260. H. C. Brown and S. M. Singh, Organometallics, 1986, 5, 998.
- 261. H. C. Brown and S. M. Singh, Organometallics, 1986, 5, 994.
- 262. H. C. Brown, M. Srebnik and T. E. Cole, Organometallics, 1986, 5, 2300.
- 263. H. E. Katz, Organometallics, 1986, 5, 2308.
- R. Köster, K. Angermund, A. Sporzynski and J. Serwatowski, Chem. Ber., 1986, 119, 1931.

- R. Köster, K. Angermund, J. Serwatowski and A. Sporzynski, Chem. Ber., 1986, 119, 1301.
- 266. R. Köster, Y.-H. Tsay, C. Krüger and J. Serwatowski, Chem. Ber., 1986, 119, 1174.
- 267. S. Alloud and B. Frange, Inorg. Chem., 1985, 24, 2520.
- 268. H. Nöth, P. Otto and W. Storch, Chem. Ber., 1986, 119, 2517.
- W. Maringgele, A. Meller, M. Noltemeyer and G. M. Sheldrick, Z. Anorg. Allg. Chem., 1986, 536, 24.
- 270. C. Habben and A. Meller, Chem. Ber., 1986, 119, 1189.
- 271. C. Habben, A. Meller, M. Noltemeyer and G. M. Sheldrick, Z. Naturforsch., 1986, 41b, 799.
- 272. H. Fußstetter and H. Nöth, Chem. Ber., 1978, 111, 3596.
- K. Niedenzu, K.-D. Müller, W. J. Layton and L. Komorowski, Z. Anorg. Allg. Chem., 1978, 439, 112.
- 274. H. Fußstetter and H. Nöth, Chem. Ber., 1979, 112, 3672.
- J. D. Odom, Z. Szafran, S. A. Johnston, Y. S. Li and J. R. Durig, J. Am. Chem. Soc., 1980, 102, 7173.
- 276. J. A. Soderquist and H. C. Brown, J. Org. Chem., 1980, 45, 3571.
- 277. B. Pachaly and R. West, J. Am. Chem. Soc., 1985, 107, 2987.
- 278. H. C. Brown, R. G. Naik, B. Singaram and C. Pyun, Organometallics, 1985, 4, 1925.
- 279. W. Maringgele and A. Meller, J. Organomet. Chem., 1980, 188, 401.
- 280. J. W. Wilson, J. Organomet. Chem., 1980, 186, 297.
- 281. P. Jutzi and A. Seufert, J. Organomet. Chem., 1979, 169, 327.
- R. Köster, P. Idelmann, G. Müller, W. R. Scheidt, W. Schüßler and K. Seevogel, *Angew. Chem.*, 1984, 96, 145; *Angew. Chem. Int. Ed. Engl.*, 1984, 23, 153.
- 283. P. Jutzi and A. Seufert, J. Organomet. Chem., 1979, 169, 357.
- 284. P. Jutzi and A. Seufert, J. Organomet. Chem., 1978, 161, C5.
- 285. A. Meller, W. Maringgele and H. Fetzer, Chem. Ber., 1980, 113, 1950.
- 286. H. Nöth and T. Taeger, Z. Naturforsch., 1979, 34b, 135.
- 287. W. Kliegel, J. Organomet. Chem., 1983, 253, 9.
- 288. R. Goetze and H. Nöth, Chem. Ber., 1976, 109, 3249.
- 289. K. N. Scott and W. S. Brey, Inorg. Chem., 1969, 8, 1414.
- 290. C. K. Narula and H. Nöth, J. Chem. Soc. Chem. Commun., 1984, 1023.
- 291. F. Dirschl, H. Nöth and W. Wagner, J. Chem. Soc. Chem. Commun., 1984, 1533.
- (a) U. Klingebiel, Angew. Chem., 1984, 96, 807; Angew. Chem. Int. Ed. Engl., 1984,
 23, 815.
 - (b) R. Boese and U. Klingebiel, J. Organomet. Chem., 1986, 306, 295.
- 293. A. Haas and M. Wilbert-Porada, Chem. Ber., 1985, 118, 1463.
- 294. H. Nöth, M. Schwartz and S. Weber, Chem. Ber., 1985, 118, 4716.
- W. Pieper, D. Schmitz and P. Paetzold, Chem. Ber., 1981, 114, 3801.
 (a) W. Weber and K. Niedenzu, J. Organomet. Chem., 1981,
 - 147.
 - (b) T. G. Hodkins, K. Niedenzu, K. S. Niedenzu and S. S. Seelig, *Inorg. Chem.*, 1981, **20**, 2097.
- 297. A. Brandl and H. Nöth, Chem. Ber., 1985, 118, 3759.
- 298. K. Anton, H. Fußstetter and H. Nöth, Chem. Ber., 1984, 117, 2542.
- P. B. Hitchcock, H. A. Jasim, M. F. Lappert and H. D. Williams, J. Chem. Soc. Chem. Commun., 1984, 662.
- 300. K. Niedenzu and B. K. Christmas, Z. Anorg. Allg. Chem., 1978, 439, 103.
- 301. P. C. Bharara and H. Nöth, Z. Naturforsch., 1979, 34b, 1352.
- 302. G. E. McAchran and S. G. Shore, Inorg. Chem., 1966, 5, 2044.

- 303. P. Wisian-Neilson and D. R. Martin, J. Inorg. Nucl. Chem., 1979, 41, 1545.
- 304. H. Nöth and S. Weber, Chem. Ber., 1984, 117, 2504.
- D. Männig, H. Nöth, M. Schwarz, S. Weber and U. Wietelmann, Angew. Chem., 1985,
 97, 979; Angew. Chem. Int. Ed. Engl., 1985, 24, 998.
- 306. W. Haubold and R. Schaeffer, Chem. Ber., 1971, 104, 513.
- 307. J. E. de Moor and G. P. van der Kelen, J. Organomet. Chem., 1966, 6, 235.
- 308. H. Landesmann and R. E. Williams, J. Am. Chem. Soc., 1961, 83, 2663.
- T. Gasparis-Ebeling and H. Nöth, Angew. Chem., 1984, 96, 301; Angew. Chem. Int. Ed. Engl., 1984, 23, 303.
- 310. R. Lang, H. Nöth, P. Otto and W. Storch, Chem. Ber., 1985, 118, 86.
- 311. H. Nöth, R. Staudigl and W. Storch, Chem. Ber., 1981, 114, 3024.
- 312. D. Männig, C. K. Narula, H. Nöth and U. Wietelmann, Chem. Ber., 1985, 118, 3748.
- 313. S. G. Shore, J. L. Christ and D. R. Long, J. Chem. Soc. Dalton Trans., 1972, 1123.
- 314. J. Bouix and R. Hillel, Can. J. Chem., 1973, 51, 292.
- 315. R. Hillel and J. Bouix, C.R. Acad. Sci. Paris, 1972, C275, 829.
- 316. J. H. Morris and P. G. Perkins, J. Chem. Soc. (A), 1966, 580.
- 317. O. T. Beachley, Inorg. Chem., 1969, 8, 981.
- 318. D. Nölle, H. Nöth and W. Winterstein, Z. Anorg. Allg. Chem., 1974, 406, 235.
- 319. J. Komorowski and K. Niedenzu, J. Organomet. Chem., 1978, 149, 141.
- 320. W. Becker and H. Nöth, Chem. Ber., 1972, 105, 1962.
- 321. S. N. Sze, Dissertation, Universität München, 1975.
- 322. R. Goetze and H. Nöth, Z. Naturforsch., 1975, 30b, 875.
- 323. M. Baudler and A. Marx, Z. Anorg. Allg. Chem., 1981, 474, 18.
- 324. M. Feher, R. Fröhlich and K.-F. Tebbe, Z. Anorg. Allg. Chem., 1981, 474, 81.
- 325. R. W. Kirk, D. L. Smith, W. Airley and P. L. Timms, J. Chem. Soc. Dalton Trans., 1972, 1392.
- P. L. Timms, T. C. Ehlert, J. L. Margrave, F. E. Brinckman, T. C. Farrar and T. D. Coyle, J. Am. Chem. Soc., 1965, 87, 3819.
- 327. R. J. Wilcsek, D. S. Matteson and J. D. Douglas, J. Chem. Soc. Chem. Commun., 1976, 401.
- 328. H. Nöth and G. Höllerer, Chem. Ber., 1966, 99, 2197.
- 329. W. Biffar, H. Nöth and R. Schwerthöffer, Liebigs Ann. Chem., 1981, 2067.
- 330. J. Pfeiffer, W. Maringgele and A. Meller, Z. Anorg. Allg. Chem., 1984, 511, 185.
- 331. H. Nöth and G. Schmid, J. Organomet. Chem., 1966, 5, 109.
- 332. J. D. Kennedy, W. McFarlane, G. S. Pyne and B. Wrackmeyer, J. Chem. Soc. Dalton Trans., 1975, 386.
- 333. H. Nöth and R. Schwerthöffer, Chem. Ber., 1981, 114, 3056.
- 334. J. D. Kennedy, W. McFarlane and B. Wrackmeyer, Inorg. Chem., 1976, 15, 1299.
- 335. K. Barlos, J. Kroner, H. Nöth and B. Wrackmeyer, Chem. Ber., 1977, 110, 2774.
- 336. P. Paetzold and H.-J. Hansen, Z. Anorg. Allg. Chem., 1966, 345, 79.
- 337. H. Nöth and H. Vahrenkamp, J. Organomet. Chem., 1968, 12, 23.
- 338. H. C. Brown and S. U. Kulkarni, J. Organomet. Chem., 1979, 168, 281.
- 339. W. Siebert, M. Schmidt and E. Gast, J. Organomet. Chem., 1969, 20, 29.
- 340. G. E. Herberich and B. Hessner, J. Organomet. Chem., 1978, 161, C36.
- 341. P. Kölle, H. Nöth and R. T. Paine, Chem. Ber., 1986, 119, 2681.
- 342. M. Haase, U. Klingebiel, R. Boese and M. Polk, Chem. Ber., 1986, 119, 1117.
- 343. W. Haubold, J. Herdtle, W. Gollinger and W. Einholz, J. Organomet. Chem., 1986, 315, 1.
- 344. W. Einholz and W. Haubold, Z. Naturforsch., 1986, 41b, 1367.
- G. E. Herberich, W. Boveleth, B. Heßner, M. Hostalek, D. P. J. Köffer, H. Ohst and D. Söhnen, Chem. Ber. 1986, 119, 420.

- 346. R. A. Bartlett, X. Feng and P. P. Power, J. Am. Chem. Soc., 1986, 108, 6817.
- C. Habben, A. Meller, M. Noltemeyer and G. M. Sheldrick, *Angew. Chem.*, 1986,
 717; *Angew. Chem. Int. Ed. Engl.*, 1986, 25, 741.
- 348. H. Nöth and F. Dirschl, Universität München, unpublished, 1982.
- 349. W. Haubold, Cited in Ref. 133.
- 350. W. Biffar, H. Nöth, H. Pommerening and B. Wrackmeyer, Chem. Ber., 1980, 113, 333.
- 351. P. L. Timms, J. Chem. Soc. Chem. Commun., 1968, 1525.
- 352. H. Pommerening, Dissertation, Universität München, 1979.
- 353. T. Davan and J. A. Morrison, J. Chem. Soc. Chem. Commun., 1981, 250.
- G. E. Herberich, B. Heßner and M. Hostalek, Angew. Chem., 1986, 98, 637; Angew. Chem. Int. Ed. Engl., 1986, 25, 642.
- 355. W. Haubold, Habilitationsschrift, Universität Stuttgart, 1975.
- 356. H. Nöth and H. Pommerening, Chem. Ber., 1981, 114, 398.
- 357. G. N. Welch and S. G. Shore, Inorg. Chem., 1968, 7, 225.
- 358. H. Nöth, Z. Naturforsch., 1984, 39b, 1463.
- 359. H. Fußstetter, J. C. Huffman, H. Nöth and R. Schaeffer, Z. Naturforsch., 1976, 31b, 1441.
- 360. K. Anton, H. Nöth and H. Pommerening, Chem. Ber., 1984, 117, 2495.
- G. Ferguson, M. Parvez, R. P. Brint, D. C. M. Power, T. R. Spalding and D. R. Lloyd, J. Chem. Soc. Dalton Trans., 1986, 2283.
- 362. H. Nöth and H. Pommerening, Chem. Ber., 1986, 119, 2261.
- D. F. Gaines, J. A. Heppert, D.E. Coons and M. W. Jorgensen, *Inorg. Chem.*, 1982, 21, 3662.
- 364. S. A. Snow and G. Kodama, Inorg. Chem., 1985, 24, 3339.
- 365. W. Haubold, J. Hrebicek and G. Sawitzki, Z. Naturforsch., 1984, 39b, 1027.
- 366. H. Nöth, H. Fußstetter, H. Pommerening and T. Taeger, Chem. Ber., 1980, 113, 342.
- D. Männig and H. Nöth, Angew. Chem., 1985, 97, 854; Angew. Chem. Int. Ed. Engl., 1985, 24, 878.
- 368. B. Glaser and H. Nöth, Chem. Ber., 1986, 119, 3253.
- 369. D. Fest, C. Habben and A. Meller, Chem. Ber., 1986, 119, 3121.
- H. Nöth and H. Pommerening, Angew. Chem., 1980, 92, 481; Angew. Chem. Int. Ed. Engl., 1980, 19, 482.
- 371. T. E. Cole, R. K. Bakshi, M. Srebnik, B. Singaram and H. C. Brown, Organometallics, 1986, 5, 2303.
- H. C. Brown, P. V. Ramachandran and J. Chandrasekhavan, Organometallics, 1986,
 5, 2138.
- 373. S. Alaoud, M. ElMouhtadi and B. Frangle, Nouv. J. Chim., 1985, 9, 499.
- 374. H. Nöth and S. N. Sze, Z. Naturforsch., 1978, 33b, 1313.
- 375. H. C. Brown, J. S. Cha, B. Nazer and C. A. Brown, J. Org. Chem., 1985, 50, 549.
- 376. H. C. Brown and J. A. Sikorski, Organometallics, 1982, 1, 28.
- 377. G. E. Herberich, in *Comprehensive Organometallic Chemistry*, (G. Wilkinson, F. G. A. Stone and E. W. Abel, eds), Vol. 1, Pergamon, Oxford, 1982, p. 381.
- 378. G. E. Herberich, K. Büschges, B. Heßner and H. Lüthe, J. Organomet. Chem., 1986, 312, 13.
- G. E. Herberich, W. Boveleth, B. Heßner, D. P. J. Köffer, M. Negele and R. Saive, J. Organomet. Chem., 1986, 308, 153.
- G. E. Herberich, B. Heßner, J. A. K. Howard, D. P. J. Köffer and R. Saive, Angew. Chem., 1986, 98, 177; Angew. Chem. Int. Ed. Engl., 1986, 25, 165.
- 381. G. E. Herberich and H. Ohst, Chem. Ber., 1985, 118, 4303.
- 382. A. Sebald and B. Wrackmeyer, J. Organomet. Chem., 1986, 304, 271.

- 383. G. E. Herberich, J. Hengesbach, G. Huttner, A. Frank and U. Schubert, J. Organomet. Chem., 1983, 246, 141.
- 384. G. E. Herberich, B. Heßner, W. Boveleth, H. Lüthe, R. Saive and L. Zelenka, Angew. Chem., 1983, 95, 1024; Angew. Chem. Int. Ed. Engl., 1983, 22, 996; Angew. Chem. Suppl., 1983, 1503.
- 385. D. B. Palladino and T. P. Fehlner, Organometallics, 1983, 2, 1692.
- 386. G. Schmid, O. Boltsch, D. Bläser and R. Boese, Z. Naturforsch, 1984, 39b, 1082.
- 387. G. Schmid, F. Schmidt and R. Boese, Chem. Ber., 1986, 118, 1949.
- 388. G. Schmid, Comments Inorg. Chem., 1985, 4, 17.
- 389. G. Schmid, G. Barbenheim and R. Boese, Z. Naturforsch., 1985, 40b, 787.
- G. Schmid, D. Kampmann, W. Meyer, R. Boese, P. Paetzold and K. Delpy, *Chem. Ber.*, 1985, 118, 2418.
- G. Schmid, U. Höhner, D. Kampmann, D. Zaika and R. Boese, J. Organomet. Chem., 1983, 256, 225.
- G. Schmid, D. Kampmann, U. Höhner, D. Bläser and R. Boese, Chem. Ber., 1984, 117, 1052.
- 393. G. Schmid, U. Höhner, D. Kampmann, F. Schmidt, D. Bläser and R. Boese, *Chem. Ber.*, 1984, 117, 672.
- 394. G. Schmid and F. Schmidt, Chem. Ber., 1986, 119, 1766.
- 395. G. Schmid and R. Boese, Z. Naturforsch., 1983, 38b, 485.
- G. Schmid, U. Höhner, D. Kampmann, D. Zaika and R. Boese, Chem. Ber., 1983, 116, 951.
- G. Schmid, S. Amirkhalili, U. Höhner, D. Kampmann and R. Boese, *Chem. Ber.*, 1982, 115, 3830.
- 398. G. Schmid, U. Höhner and D. Kampmann, Z. Naturforsch., 1983, 38b, 1094.
- 399. W. Siebert, Adv. Organomet. Chem., 1980, 18, 301.
- 400. W. Siebert, M. E.-D. M. El-Essavi, R. Full and J. Heck, Z. Naturforsch., 1985, 40b, 458.
- 401. K. Kinberger and W. Siebert, Chem. Ber., 1978, 111, 356.
- W. Siebert, C. Böhle, C. Krüger and Y.-H. Tsay, Angew. Chem., 1978, 90, 558; Angew. Chem. Int. Ed. Engl., 1978, 17, 527.
- 403. T. Kuhlmann and W. Siebert, Z. Naturforsch., 1985, 40b, 167.
- 404. H. Wadepohl, H. Pritzkow and W. Siebert, Chem. Ber., 1985, 118, 729.
- F. H. Köhler, U. Zenneck, J. Edwin and W. Siebert, J. Organomet. Chem., 1981, 208, 137.
- 406. M. Bochmann, K. Geilich and W. Siebert, Chem. Ber., 1985, 118, 401.
- 407. T. Kuhlmann and W. Siebert, Z. Naturforsch., 1984, 39b, 1046.
- Kuhlmann, S. Roth, J. Rozière and W. Siebert, Angew. Chem., 1986, 98, 87;
 Angew. Chem. Int. Ed. Engl., 1986, 25, 105.
- 409. H. Wadepohl and W. Siebert, Z. Naturforsch., 1984, 39b, 50.
- G. E. Herberich and H. Müller, Angew. Chem., 1971, 83, 1020; Angew. Chem. Int. Ed. Engl., 1971, 10, 937.
- 411. G. E. Herberich and M. Thönnessen, J. Organomet. Chem., 1979, 177, 357.
- 412. G. E. Herberich, E. A. Mintz and H. Müller, J. Organomet. Chem., 1980, 187, 17.
- 413. G. E. Herberich and E. Raabe, J. Organomet. Chem., 1986, 309, 143.
- 414. G. E. Herberich and G. Pampaloni, J. Organomet. Chem., 1982, 240, 121.
- 415. G. E. Herberich, M. Thönnessen and D. Schmitz, J. Organomet. Chem., 1980, 191, 27.
- 416. J. Edwin, W. Siebert and C. Krüger, J. Organomet. Chem., 1981, 215, 255.
- 417. G. E. Herberich, J. Hengesbach and U. Kölle, Chem. Ber., 1977, 110, 1171.
- 418. R. Köster, G. Seidel, S. Amirkhalili, R. Boese and G. Schmid, *Chem. Ber.*, 1982, 115, 738.

- R. Köster and G. Seidel, Angew. Chem., 1982, 94, 225; Angew. Chem. Int. Ed. Engl., 1982, 21, 207.
- 420. K. Delpy, D. Schmitz and P. Paetzold, Chem. Ber., 1983, 116, 2994.
- 421. P. Paetzold and K. Delpy, Chem. Ber., 1985, 118, 2552.
- 422. H. Nöth and U. Schuchardt, Z. Anorg. Allg. Chem., 1975, 418, 97.
- 423. W. Siebert, G. Augustin, R. Full, C. Krüger and Y.-H. Tsay, Angew. Chem., 1975, 87, 286; Angew. Chem. Int. Ed. Engl., 1975, 14, 262.
- 424. W. Ehrl and H. Vahrenkamp, Chem. Ber., 1970, 103, 3563.
- 425. A. J. Ashe, W. Butler and H. F. Sandford, J. Am. Chem. Soc., 1979, 101, 7066.
- 426. K. Stumpf, H. Pritzkow and W. Siebert, Angew. Chem., 1985, 97, 64; Angew. Chem. Int. Ed. Engl., 1985, 24, 71.
- G. Schmid, D. Zaika and R. Boese, Angew. Chem., 1985, 97, 581; Angew. Chem. Int. Ed. Engl., 1985, 24, 602.
- 428. N. S. Hosmane, N. N. Sirmokadam and R. H. Herber, Organometallics, 1984, 3, 1665.
- 429. N. S. Hosmane, P. de Meester, N. N. Maldar, S. B. Potts, S. S. C. Chu and R. H. Herber, Organometallics, 1986, 5, 772.
- N. S. Hosmane, P. de Meester, U. Siriwardane, M. S. Islam and S. S. C. Chu, J. Chem. Soc. Chem. Commun., 1986, 1421.
- N. S. Hosmane, P. de Meester, U. Siriwardane, M. S. Islam and S. S. C. Chu, J. Am. Chem. Soc., 1986, 108, 6050.
- 432. R. Boese, W. Finke, T. Keil, P. Paetzold and G. Schmid, Z. Naturforsch., 1985, 40b, 1327.
- 433. G. E. Herberich and B. Heßner, Chem. Ber., 1982, 115, 3115.
- 434. G. E. Herberich and H. Ohst, J. Organomet. Chem., 1986, 307, C16.
- J. Schulze and G. Schmid, Angew. Chem., 1980, 92, 61; Angew. Chem. Int. Ed. Engl., 1980, 19, 54.
- 436. K. von Werner and B. Wrackmeyer, J. Fluor. Chem., 1986, 31, 183.
- 437. P. Kölle and H. Nöth, Chem. Ber., 1986, 119, 3849.
- 438. B. Glaser and H. Nöth, Chem. Ber., 1986, 119, 3856.
- 439. G. E. Herberich, W. Boveleth, B. Heßner, W. Koch, E. Raabe and D. Schmitz, J. Organomet. Chem., 1984, 265, 225.
- 440. G. E. Herberich, B. Heßner and T. T. Kho, J. Organomet. Chem., 1980, 197, 1.
- G. E. Herberich and H. J. Becker, Angew. Chem., 1973, 85, 817; Angew. Chem. Int. Ed. Engl., 1973, 12, 764.
- 442. G. E. Herberich and E. Bauer, Chem. Ber., 1977, 110, 1167.
- 443. G. E. Herberich and K. Carsten, J. Organomet. Chem., 1978, 144, C1.
- A. J. Ashe, E. Meyer, P. Shu, T. von Lehmann and J. Bastide, J. Am. Chem. Soc., 1975, 97, 6865.
- 445. A. J. Ashe, W. Butler and H. F. Sandford, J. Am. Chem. Soc., 1979, 101, 7066.
- 446. G. E. Herberich and H. J. Becker, Z. Naturforsch., 1974, 29b, 439.
- 447. G. E. Herberich, W. Koch and H. Lueken, J. Organomet. Chem., 1978, 160, 17.
- G. E. Herberich, H. J. Becker, K. Carsten, C. Engelke and W. Koch, *Chem. Ber.*, 1976, 109, 2382.
- 449. G. E. Herberich and G. Greiss, Chem. Ber., 1972, 105, 3413.
- 450. G. E. Herberich, C. Engelke and W. Pahlmann, Chem. Ber., 1979, 112, 607.
- 451. G. E. Herberich and A. K. Naithani, J. Organomet. Chem., 1983, 241, 1.
- 452. G. E. Herberich and D. Söhnen, J. Organomet. Chem., 1983, 254, 143.
- P. S. Madren, A. Modinos, P. L. Timms and P. Woodward, J. Chem. Soc. Dalton Trans., 1975, 1272.

- G. E. Herberich, B. Heßner, G. Huttner and L. Zsolnai, Angew. Chem., 1981, 93, 471;
 Angew. Chem. Int. Ed. Engl., 1981, 20, 472.
- 455. H. Wadepohl, H. Pritzkow and W. Siebert, Organometallics, 1983, 2, 1899.
- 456. J. Edwin, M. Bochmann, M. C. Böhm, D. E. Brennan, W. E. Geiger, C. Krüger, J. Pebler, H. Pritzkow, W. Siebert, W. Swiridoff, H. Wadepohl, J. Weiss and U. Zenneck, J. Am. Chem. Soc., 1983, 105, 2582.
- W. Siebert and M. Bochmann, Angew. Chem., 1977, 89, 483; Angew. Chem. Int. Ed. Engl., 1977, 16, 468.
- W. Siebert, J. Edwin, H. Wadepohl and H. Pritzkow, Angew. Chem., 1982, 94, 148;
 Angew. Chem. Int. Ed. Engl., 1982, 21, 149.
- M. W. Whiteley, H. Pritzkow, U. Zenneck and W. Siebert, Angew. Chem., 1982, 94, 464;
 Angew. Chem. Int. Ed. Engl., 1982, 21, 453.
- W. Siebert and M. Bochmann, Angew. Chem., 1977, 89, 895; Angew. Chem. Int. Ed. Engl., 1977, 16, 857.
- J. Edwin, M. C. Böhm, N. Chester, D. M. Hoffman, R. Hoffmann, H. Pritzkow,
 W. Siebert, K. Stumpf and H. Wadepohl, Organometallics, 1983, 2, 1666.
- 462. W. Siebert, R. Full, J. Edwin and K. Kinberger, J. Organomet. Chem., 1977, 131, 1.
- 463. W. Siebert, R. Full, C. Krüger and Y.-H. Tsay, Z. Naturforsch., 1976, 31b, 203.
- W. Siebert and W. Rothermel, Angew. Chem., 1977, 89, 346; Angew. Chem. Int. Ed. Engl., 1977, 16, 333.
- 465. U. Kölle, W.-D. H. Beiersdorf and G. E. Herberich, J. Organomet. Chem., 1978, 152, 7.
- 466. G. Schmid, Chem. Ber., 1970, 103, 528.
- 467. H. Nöth and U. Schuchardt, J. Organomet. Chem., 1970, 24, 435.
- G. Schmid, H. Nöth and J. Deberitz, Angew. Chem., 1968, 80, 282; Angew. Chem. Int. Ed. Engl., 1968, 7, 293.
- 469. H. Werner, R. Prinz and E. Deckelmann, Chem. Ber., 1969, 102, 95.
- 470. J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 1729.
- B. E. Mann and B. F. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, London, 1981.
- 472. R. Balz, U. Brändle, E. Kammerer, D. Köhnlein, O. Lutz, A. Nolle, R. Schafitel, and E. Veil, Z. Naturforsch., 1986, 41a, 737.
- 473. H. C. Brown and S.-C. Kim, J. Org. Chem., 1984, 49, 1064.
- 474. H. Nöth and B. Wrackmeyer, Chem. Ber., 1974, 107, 3070.
- 475. B. Wrackmeyer, J. Organomet. Chem., 1976, 117, 313.
- 476. H. Nöth and B. Wrackmeyer, J. Magn. Reson., 1986, 69, 492.
- 477. H. Nöth and T. Taeger, J. Organomet. Chem., 1977, 142, 281.
- 478. J. P. Tuchagues and J. P. Laurent, Bull. Soc. Chim. France, 1971, 4246.
- 479. B. M. Mikhailov and K. L. Cherkasova, J. Organomet. Chem., 1983, 246, 9.
- 480. B. M. Mikhailov, Sov. Sci. Rev., Sect. B, Chem. Rev., 1980, 2, 283; CA, 1981, 94, 47381.
- 481. B. M. Mikhailov and T. K. Baryshnikova, J. Organomet. Chem., 1984, 260, 25.
- B. M. Mikhailov, V. N. Smirnov and V. A. Kasparov, Izv. Akad. Nauk SSSR Ser. Khim., 1976, 2303.
- 483. R. Contreras and B. Wrackmeyer, Z. Naturforsch., 1980, 35b, 1236.
- 484. J. A. Soderquist and H. C. Brown, J. Org. Chem., 1981, 46, 4599.
- T. Wizeman, H. Mueller, D. Seybold and K. Dehnicke, J. Organomet. Chem., 1969, 20, 211.
- 486. B. R. Gragg, W. J. Layton and K. Niedenzu, J. Organomet. Chem., 1977, 132, 29.
- 487. P. Binger and R. Köster, Synthesis, 1974, 350.
- 488. S. Kerschl, B. Wrackmeyer, D. Männig, H. Nöth and R. Staudigl, Z. Naturforsch., 1987, 42b, 387.

- 489. L. Horner, U. Kaps and G. Simons, J. Organomet. Chem., 1985, 287, 1.
- 490. E. Kalbarczyk and S. Pasynkiewicz, J. Organomet. Chem., 1985, 292, 119.
- 491. P. Binger and R. Köster, Chem. Ber., 1975, 108, 395.
- 492. S. Kerschl and B. Wrackmeyer, Z. Naturforsch., 1985, 40b, 845.
- 493. H. Nöth and D. Sedlak, Chem. Ber., 1983, 116, 1479.
- 494. D. E. Young and S. G. Shore, J. Am. Chem. Soc., 1969, 91, 3497.
- 495. D. E. Walmsley, W. L. Budde and M. F. Hawthorne, J. Am. Chem. Soc., 1971, 93, 3150.
- 496. D. Sedlak, Dissertation, Universität München, 1982.
- 497. H. C. Brown and B. Singaram, Inorg. Chem., 1979, 18, 53.
- 498. H. C. Brown, B. Singaram and J. R. Schwier, Inorg. Chem., 1979, 18, 51.
- 499. C. Weidig, S. S. Uppal, and H. C. Kelly, Inorg. Chem., 1974, 13, 1763.
- 500. W. Biffar, H. Nöth and D. Sedlak, Organometallics, 1983, 2, 579.
- 501. B. Singaram, T. E. Cole and H. C. Brown, Organometallics, 1984, 3, 774.
- 502. J. Ewerling and H. Nöth, Z. Naturforsch., 1970, 25b, 780.
- 503. B. Wrackmeyer, Spectrosc. Int. J., 1982, 1, 201.
- R. C. Wade, E. A. Sullivan, J. R. Berscheid and K. F. Purcell, *Inorg. Chem.*, 1970, 9, 2146.
- 505. L. W. Hall, D. W. Lowman, P. D. Ellis and J. D. Odom, Inorg. Chem., 1975, 14, 580.
- B. F. Spielvogel, A. T. McPhail, J. A. Knight, C. G. Moreland, C. L. Gatchell and K. W. Morse, *Polyhedron*, 1983, 2, 1345.
- 507. B. Singaram, T. E. Cole and H. C. Brown, Organometallics, 1984, 3, 1520.
- G. W. Kabalka, U. Sastry, K. A. R. Sastry, F. F. Knapp and P. C. Srivastava, J. Organomet. Chem., 1983, 259, 269.
- 509. H. C. Brown, B. Singaram and C. P. Mathew, J. Org. Chem., 1981, 46, 2712.
- 510. H. C. Brown and J. L. Hubbard, J. Org. Chem., 1979, 44, 467.
- 511. C. A. Brown and S. Krishnamurthy, J. Organomet. Chem., 1978, 156, 111.
- 512. J. L. Hubbard and G. W. Kramer, J. Organomet. Chem., 1978, 156, 81.
- A. J. Zozulin, H. J. Jakobsen, T. F. Morre, A. R. Garber and J. D. Odom, J. Magn. Reson., 1980, 41, 458.
- 514. M. Yanagisawa and O. Yamamoto, Org. Magn. Reson., 1980, 14, 76.
- 515. H. C. Brown and U. S. Rocherla, Organometallics, 1986, 5, 391.
- 516. D. J. Hart and W. T. Ford, J. Org. Chem., 1974, 39, 363.
- 517. R. Köster, Private communication.
- 518. M. M. Midland, J. A. Sinclair and H. C. Brown, J. Org. Chem., 1974, 39, 731.
- H. J. Bestmann and T. Arenz, Angew. Chem., 1986, 98, 571; Angew. Chem. Int. Ed. Engl., 1986, 25, 559.
- 520. F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc., 1969, 91, 4940.
- 521. J. D. Odom, L. W. Hall and P. D. Ellis, Org. Magn. Reson., 1980, 41, 458.
- 522. E. Negishi, M. J. Idacavage, K.-W. Chiu, T. Yoshida, A. Abramovitch, M. E. Goettel, A. Silveira and H. D. Bretherick, J. Chem. Soc. Perkin Trans. II, 1978, 1225.
- 523. H. C. Brown, K. S. Racherla and S. M. Singh, Tetrahedron Lett., 1984, 2411.
- 524. B. Wrackmeyer, Z. Naturforsch., 1982, 37b, 788.
- 525. B. M. Mikhailov, M. E. Gurskii and D. G. Pershin, J. Organomet. Chem., 1983, 246, 19.
- 526. J. W. Emsley and L. Phillips, Prog. NMR Spectrosc., 1971, 7, 1.
- M. van Duin, J. A. Peters, A. P. G. Kieboom and H. van Bekkum, *Tetrahedron*, 1984, 40, 2901.
- M. van Duin, J. A. Peters, A. P. G. Kieboom and H. van Bekkum, *Tetrahedron*, 1985, 41, 3411.
- 529. M. Makkee, A. P. G. Kieboom and H. van Bekkum, Recl. Trav. Chim., 1985, 104, 230.
- 530. C. F. Bell, R. D. Beauchamp and E. L. Short, Carbohydr. Res., 1986, 147, 191.

- M. van Duin, J. A. Peters, A. P. G. Kieboom and H. van Bekkum, Recl. Trav. Chim., 1986, 105, 488.
- 532. B. D. James, R. K. Nanda, M. G. H. Wallbridge, J. Chem. Soc. (A), 1966, 182.
- R. Eisenbarth and W. Sundermeyer, Angew. Chem., 1978, 90, 226; Angew. Chem. Int. Ed. Engl., 1978, 17, 212.
- 534. G. Fritz and E. Sattler, Z. Anorg. Allg. Chem., 1975, 413, 195.
- 535. W. Biffar and H. Nöth, Chem. Ber., 1982, 115, 934.
- 536. J. R. Blackborow and J. C. Lockhart, J. Chem. Soc. (A), 1971, 1343.
- 537. H. C. Brown, J. S. Cha and B. Nazer, J. Org. Chem., 1984, 49, 2073.
- W. Biffar and H. Nöth, Angew. Chem., 1980, 92, 65; Angew. Chem. Int. Ed. Engl., 1980, 19, 58.
- 539. W. Biffar and H. Nöth, Z. Naturforsch., 1981, 36b, 1509.
- 540. D. Barr, K. B. Hutton, J. H. Morris, R. E. Mulvey, D. Reed and R. Snaith, J. Chem. Soc. Chem. Commun., 1986, 127.
- C. Eaborn, M. N. A. El-Kheli, P. B. Hitchcock and J. D. Smith, *J. Chem. Soc. Chem. Commun.*, 1984, 1673.
- A. G. Avent, C. Eaborn, M. N. A. El-Kheli, M. E. Molla, J. D. Smith and A. C. Sullivan, J. Am. Chem. Soc., 1986, 108, 3854.
- 543. J. A. Gardiner and J. W. Collat, J. Am. Chem. Soc., 1964, 86, 3165.
- 544. B. F. Spielvogel and E. F. Rothgery, J. Chem. Soc. Chem. Commun., 1966, 765.
- 545. P. C. Keller, J. Am. Chem. Soc., 1969, 91, 1231.
- 546. S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 3170.
- 547. E. A. Dietz, K. W. Morse and R. W. Parry, Inorg. Chem., 1976, 15, 1.
- 548. S. Brownstein, J. Chem. Soc. Chem. Commun., 1980, 149.
- 549. B. E. Smith, B. D. James and R. M. Peachey, Inorg. Chem., 1977, 16, 2057.
- B. G. Sayer, J. I. A. Thompson, T. Birchall, D. R. Eaton and M. J. McGlinchey, *Inorg. Chem.*, 1981, 20, 3748.
- M. Mancini, P. Bougeard, R. C. Burns, M. Mlekuz, B. G. Sayer, J. I. A. Thompson and M. J. McGlinchey, *Inorg. Chem.*, 1984, 23, 1072.
- 552. M. V. Baker and L. D. Field, J. Chem. Soc. Chem. Commun., 1984, 996.
- 553. H. Werner, M. A. Esteruelas, U. Meyer and B. Wrackmeyer, Chem. Ber., 1987, 120, 11.
- 554. D. J. Wink and N. J. Cooper, J. Chem. Soc. Dalton Trans., 1984, 1257.
- R. Shinomoto, J. G. Brennan, N. N. Edelstein and A. Zalkin, *Inorg. Chem.*, 1985, 24, 2896.
- 556. B. Wrackmeyer, J. Magn. Reson., 1986, 66, 172.
- 557. D. E. Young, G. E. McAchran and S. G. Shore, J. Am. Chem. Soc., 1966, 88, 4390.
- C. J. Forget, M. A. Chiusano, J. D. O'Brien and D. R. Martin, J. Inorg. Nucl. Chem., 1980, 42, 165.
- D. R. Martin, C. M. Merkel, J. U. Mondal and C. R. Rushing, *Inorg. Chim. Acta*, 1985, 99, 81.
- 560. C. M. Merkel and D. R. Martin, Inorg. Chim. Acta, 1985, 96, L59.
- 561. R. Contreras, F. Santiesteban, M. A. Paz-Sandoval and B. Wrackmeyer, *Tetrahedron*, 1984, 40, 3829.
- M. A. Paz-Sandoval, F. Santisteban and R. Contreras, Magn. Reson. Chem., 1985, 23, 428.
- 563. B. F. Spielvogel, F. U. Ahmed and A. T. McPhail, Inorg. Chem., 1986, 25, 4395.
- 564. P. C. Keller, K. K. Knapp and J. V. Rund, Inorg. Chem., 1985, 24, 2382.
- 565. R. W. Rudolph, R. W. Parry and C. F. Farran, *Inorg. Chem.*, 1966, 5, 723.
- 566. R. W. Rudolph and C. W. Shultz, J. Am. Chem. Soc., 1971, 93, 6821.
- 567. A. H. Cowley and M. C. Damasco, J. Am. Chem. Soc., 1971, 93, 6815.

- 568. C. W. Heitsch, Inorg. Chem., 1965, 4, 1019.
- 569. T. Costa and H. Schmidbaur, Chem. Ber., 1982, 115, 1374.
- D. R. Martin, C. M. Merkel, J. P. Ruiz and J. U. Mondal, *Inorg. Chim. Acta*, 1985, 100, 293.
- 571. J. R. Durig, B. A. Hudgens and J. D. Odom, *Inorg. Chem.*, 1974, 13, 2306.
- 572. R. K. Kanjolia, L. K. Krannich and C. L. Watkins, Inorg. Chem., 1985, 24, 445.
- 573. D. J. Pasto and P. Balasubramaniyan, J. Am. Chem. Soc., 1967, 89, 295.
- 574. T. P. Onak, H. Landesmann, R. E. Williams and I. Shapiro, J. Phys. Chem., 1959, 63, 1533.
- 575. B. M. Mikhailov, M. N. Bochkareva, T. A. Shchegoleva and L. I. Lavrinovich, *Izv. Akad. Nauk SSSR Ser. Khim.*, 1968, 1876.
- 576. M. H. Mendelsohn and W. L. Jolly, Inorg. Chem., 1971, 11, 1944.
- 577. K. Kinberger and W. Siebert, Z. Naturforsch., 1975, 30b, 55.
- 578. H. C. Brown and S. U. Kulkarni, J. Org. Chem., 1979, 44, 2422.
- R. K. Kanjolia, L. K. Krannich and C. L. Watkins, J. Chem. Soc. Dalton Trans., 1986, 2345.
- 580. H. C. Brown and N. Ravindran, J. Am. Chem. Soc., 1976, 98, 1785.
- 581. M. G. Hu and R. A. Geanangel, *Inorg. Chem.*, 1979, 18, 3297.
- 582. H. C. Brown and N. Ravindran, J. Am. Chem. Soc., 1976, 98, 1798.
- J. P. Tuchagues, J. P. Laurent, H. Mongeot, J. Dazord and J. Cuelleron, J. Organomet. Chem., 1973, 54, 69.
- 584. J. M. van Paaschen and M. A. Geanangel, J. Am. Chem. Soc., 1972, 94, 2680.
- 585. M. L. Denniston, D. A. Chiusano and D. R. Martin, J. Inorg. Nucl. Chem., 1976, 38, 979.
- 586. R. A. Geanangel, Inorg. Chem., 1975, 14, 696.
- 587. J. L. Vidal and G. E. Ryschkewitsch, Inorg. Chem., 1977, 16, 1898.
- 588. H. C. Brown and J. A. Sikorski, Organometallics, 1982, 1, 28.
- 589. S. U. Kulkarni and H. C. Brown, J. Org. Chem., 1979, 44, 1747.
- 590. M. Schmidt and F. R. Rittig, Chem. Ber., 1970, 103, 3343.
- 591. H. C. Brown, N. Ravindran and S. U. Kulkarni, J. Org. Chem., 1980, 45, 384.
- R. Maisch, E. Ott, W. Buchner, W. Malisch, I. Colquhoun and W. McFarlane, J. Organomet. Chem., 1985, 286, C31.
- 593. W. F. McNamara, E. N. Duester, R. T. Paine, J. V. Ortiz, P. Kölle and H. Nöth, Organometallics, 1986, 5, 380.
- 594. J. P. Tuchagues and J. P. Laurent, Bull. Soc. Chim. France, 1969, 385.
- 595. B. Rapp and J. R. Drake, Inorg. Chem., 1973, 12, 2868.
- 596. J. Torri, Magn. Reson. Chem., 1986, 24, 279.
- 597. M. J. Bula and J. S. Hartman, J. Chem. Soc. Dalton Trans., 1973, 1047.
- 598. A. Fox, J. S. Hartman and R. E. Humphries, J. Chem. Soc. Dalton Trans., 1982, 1275.
- 599. J. M. Miller, Inorg. Chem., 1983, 22, 2384.
- 600. J. E. Drake and B. Rapp, J. Inorg. Nucl. Chem., 1974, 36, 2613.
- 601. M. L. Denniston and D. R. Martin, J. Inorg. Nucl. Chem., 1974, 36, 1461.
- 602. E. Muylle, G. P. van der Keelen and E. G. Claeys, Spectrochim. Acta, 1976, A32, 1149.
- 603. J. M. Chehayber and J. E. Drake, Inorg. Chim. Acta, 1986, 112, 209.
- 604. M. L. Denniston and D. R. Martin, J. Inorg. Nucl. Chem., 1974, 36, 2175.
- J. Plešek, T. Jelinek, S. Heřmanek and B. Štibr, Coll. Czech. Chem. Commun., 1986, 51, 81.
- 606. G. Süß-Fink, Chem. Ber., 1986, 119, 2393.
- 607. M. F. A. Dove, R. C. Hibbert and N. Logan, J. Chem. Soc. Dalton Trans., 1984, 2719.
- 608. G. A. Olah, K. Laali and O. Farooq, Organometallics, 1984, 3, 1337.
- 609. R. Csuk, H. Hönig and C. Romanin, Monatsh. Chem., 1982, 113, 1025.

- 610. R. Contreras, C. Garcia, T. Mancilla and B. Wrackmeyer, J. Organomet. Chem., 1983, 246, 213.
- 611. R. Csuk, N. Müller and H. Sterk, Z. Naturforsch., 1985, 40b, 987.
- 612. P. C. Keller, R. L. Marks and J. V. Rund, Polyhedron, 1983, 2, 595.
- 613. K. Niedenzu and R. B. Read, Z. Anorg. Allg. Chem., 1981, 473, 139.
- 614. E. Hohaus, Z. Anorg. Allg. Chem., 1982, 484, 41.
- 615. F. Santiesteban, M. A. Campos, H. Morales, R. Contreras and B. Wrackmeyer, *Polyhedron*, 1984, 3, 589.
- 616. B. Garigues, M. Mulliez and Raharinirina, J. Organomet. Chem., 1986, 302, 153.
- 617. T. Mancilla, R. Contreras and B. Wrackmeyer, J. Organomet. Chem., 1986, 307, 1.
- J.-P. Costes, G. Cros and J.-P. Laurent, Synth. React. Inorg. Met.-Org. Chem., 1981, 11, 383.
- 619. G. Klebe and D. Tranqui, Inorg. Chim. Acta, 1984, 81, 1.
- 620. W. Maringgele, G. M. Sheldrick, A. Meller and M. Noltemeyer, *Chem. Ber.*, 1984, 117, 2112.
- 621. S. L. Ioffe, L. M. Leont'eva, L. M. Makarenkova, A. L. Blumenfel'd, V. F. Tsyatrikov and V. V. Tartakowski, *Izv. Akad. Nauk SSSR Ser. Khim.*, 1975, 1146.
- 622. C. H. Toporcer, R. E. Dessey and S. I. E. Green, Inorg. Chem., 1965, 4, 1649.
- 623. C. K. Narula and H. Nöth, Z. Naturforsch, 1983, 38b, 1161.
- 624. N. Farfan and R. Contreras, Nouv. J. Chim., 1982, 6, 269.
- 625. E. Hohaus and W. Riepe, Z. Naturforsch., 1974, 29b, 663.
- 626. K. W. Böddeker, S. G. Shore and R. K. Bunting, J. Am. Chem. Soc., 1966, 88, 4396.
- 627. W. Haubold and R. Schaeffer, Chem. Ber., 1971, 104, 513.
- 628. O. T. Beachley and B. Washburn, Inorg. Chem., 1976, 15, 284.
- 629. S. Trofimenko, J. Am. Chem. Soc., 1966, 88, 1842.
- 630. W. J. Layton, K. Niedenzu and S. L. Smith, Z. Anorg. Allg. Chem., 1982, 495, 52.
- 631. S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 3165.
- 632. C. E. May, K. Niedenzu and S. Trofimenko, Z. Naturforsch., 1977, 33b, 220.
- 633. K. Niedenzu and H. Nöth, Chem. Ber., 1983, 116, 1132.
- 634. W. J. Layton, K. Niedenzu, P. M. Niedenzu and S. Trofimenko, *Inorg. Chem.*, 1985, 24, 1454.
- 635. J. Bielawski and K. Niedenzu, Inorg. Chem., 1986, 25, 85.
- 636. J. Bielawski, T. G. Hodgkins, W. J. Layton, K. Niedenzu, P. M. Niedenzu and S. Trofimenko, *Inorg. Chem.*, 1986, 25, 87.
- 637. J. Bielawski and K. Niedenzu, Inorg. Chem., 1986, 25, 1771.
- 638. K. Niedenzu, P. M. Niedenzu, and K. R. Warner, Inorg. Chem., 1985, 24, 1604.
- 639. A. Ouassas and B. Frange, Bull. Soc. Chim. France, 1984, I-336.
- 640. K. Niedenzu and S. Trofimenko, Inorg. Chem., 1985, 24, 4222.
- 641. G. E. Ryschkewitsch, J. Am. Chem. Soc., 1967, 89, 3145.
- 642. M. J. Farquharson and J. S. Hartman, J. Chem. Soc. Chem. Commun., 1984, 256.
- 643. C. M. Clarke, K. Niedenzu, P. M. Niedenzu and S. Trofimenko, *Inorg. Chem.*, 1985, 24, 2648.
- 644. H. Nöth und U. Schuchardt, Chem. Ber., 1974, 107, 3104.
- 645. G. Müller, Dissertation, Technische Universität, München, 1980.
- P. Hornbach, M. Hildenbrand, H. Pritzkow and W. Siebert, Angew. Chem., 1986,
 121; Angew. Chem. Int. Ed. Engl., 1986, 25, 1112.
- 647. C. Camacho, M. A. Paz-Sandoval and R. Contreras, Polyhedron, 1986, 5, 1723.
- 648. G. E. Herberich, B. Hessner and R. Saive, J. Organomet. Chem., 1987, 319, 9.
- 649. D. R. Martin, M. A. Chinsana, M. L. Denniston, D. J. Pye, E. D. Martin and B. T. Pennington, J. Inorg. Nucl. Chem., 1978, 40, 9.

- H. C. Brown, W. S. Park, J. S. Cha, B. T. Cho and C. A. Brown, J. Org. Chem., 1986, 51, 337.
- 651. H. C. Brown and U. S. Racherla, J. Org. Chem., 1986, 51, 427.
- R. Contreras, H. R. Morales, M. de L. Mendoza and C. Dominguez, Spectrochim. Acta, 1987, A43, 43.
- 653. G. E. Herberich, W. Boveleth, B. Hessner, M. Hostalek, D. P. J. Köffer and M. Negele, J. Organomet. Chem., 1987, 319, 311.
- 654. J. C. Vites, C. Eigenbrot and T. P. Fehlner, J. Am. Chem. Soc., 1984, 106, 4633.
- J. C. Vites, C. E. Housecroft, G. B. Jacobsen and T. P Fehlner, Organometallics, 1984, 3, 1591.
- J. Vites, C. E. Housecroft, C. Eigenbrot, M. L. Buhl, G. J. Long and T. P. Fehlner, J. Am. Chem. Soc., 1986, 108, 3304.
- 657. N. F. Ramsey, Phys. Rev., 1953, 91, 303.
- 658. P. Pyykkö, Chem. Phys., 1977, 22, 289.
- 659. J. A. Pople and D. P. Santry, Mol. Phys., 1964, 8, 1.
- 660. J. Kowalewski, Ann. Rep. NMR Spectrosc., 1982, 12, 81.
- 661. I. Ando and G. A. Webb, Theory of NMR Parameters, Academic Press, London, 1983.
- 662. J. Kroner and B. Wrackmeyer, J. Chem. Soc. Faraday Trans. II, 1976, 72, 2283.
- T. Onak, J. B. Leach, S. Anderson, M. J. Frisch and D. Marynick, J. Magn. Reson., 1976, 23, 237.
- 664. H. A. Bent, Chem. Rev., 1961, 61, 275.
- 665. T. L. Venable and R. N. Grimes, J. Am. Chem. Soc., 1984, 106, 29.
- 666. D. Reed, J. Chem. Res. (S), 1984, 198.
- 667. X. L. R. Fontaine and J. D. Kennedy, J. Chem. Soc. Chem. Commun., 1986, 779.
- 668. T. C. Farrar and G. R. Quinting, Inorg. Chem., 1985, 24, 1941.
- 669. (a) G. Bodenhausen and D. J. Ruben, Chem. Phys. Lett., 1980, 69, 185.
 - (b) A. G. Redfield, Chem. Phys. Lett., 1983, 96, 537
 - (c) A. Bax, R. H. Griffey and B. L. Hawkins, J. Am. Chem. Soc., 1983, 105, 7188.
- 670. M. A. Beckett, J. D. Kennedy and O. W. Howarth, J. Chem. Soc. Chem. Commun., 1985, 855.
- C. K. Narula, J. F. Janik, E. N. Duesler, R. T. Paine and R. Schaeffer, *Inorg. Chem.*, 1986, 25, 3346.
- 672. B. Wrackmeyer and W. Biffar, Z. Naturforsch., 1979, 34b, 1270.
- 673. D. D. Lehman and D. F. Shriver, Inorg. Chem., 1974, 13, 2203.
- 674. P. Powell and H. Nöth, J. Chem. Soc. Chem. Commun., 1966, 637.
- 675. D. A. Thompson, T. K. Hilty and R. W. Rudolph, J. Am. Chem. Soc., 1977, 99, 6774.
- 676. J. D. Kennedy and J. Staves, Z. Naturforsch., 1979, 34b, 808.
- 677. J. D. Kennedy and B. Wrackmeyer, J. Magn. Reson., 1980, 38, 529.
- 678. N. N. Greenwood, M. J. Hails, J. D. Kennedy and W. S. McDonald, J. Chem. Soc. Dalton Trans., 1985, 953.
- 679. F. Bachmann, H. Nöth, H. Pommerening, B. Wrackmeyer and T. Wirthlin, J. Magn. Reson., 1979, 34, 237.
- 680. J. A. Anderson, R. J. Astheimer, J. D. Odom and L. G. Sneddon, J. Am. Chem. Soc., 1984, 106, 2275.
- 681. S. K. Boocock, Y. Cheek, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc. Dalton Trans., 1981, 1430.
- 682. J. D. Odom, P. D. Ellis and H. C. Walsh, J. Am. Chem. Soc., 1971, 93, 3529.
- 683. D. W. Lowman, P. D. Ellis and J. D. Odom, Inorg. Chem., 1973, 12, 682.
- 684. E. J. Stampf, A. R. Garber, J. D. Odom and P. D. Ellis, J. Am. Chem. Soc., 1976, 98, 6550.

- 685. J. W. Akitt and C. G. Savory, J. Magn. Reson., 1975, 17, 122.
- 686. B. Glaser, Dissertation, Universität München, 1985.
- 687. J. D. Odom, T. F. Moore, S. A. Johnston and J. P. Durig, J. Mol. Struct., 1979, 54, 49.
- 688. T. Onak and E. Wan, J. Chem. Soc. Dalton Trans., 1974, 665.
- 689. H.-O. Berger, H. Nöth and B. Wrackmeyer, Chem. Ber., 1979, 112, 2884.
- 690. B. Wrackmeyer, J. Magn. Reson., 1983, 43, 174.
- 691. E. A. Dietz, Jr., K. W. Morse and R. W. Parry, Inorg. Chem., 1976, 15, 1.
- (a) G. J. Martin, M. L. Martin and J. P. Gouesnard, in NMR—Basic Principles and Progress (P. Diehl, E. Fluck and R. Kosfeld, eds), Vol. 18, Springer-Verlag, Berlin, 1981.
 (b) M. Wilanowski, L. Stefaniak and G. A. Webb, Ann. Rep. NMR Spectrosc., 1981, 11B, 1.
- 693. N. J. Maraschin and R. J. Lagow, Inorg. Chem., 1975, 14, 1855.
- R. J. Hogan, P. A. Scherr, A. T. Weibel and J. P. Oliver, J. Organomet. Chem., 1975, 85, 265.
- 695. F. W. Wehrli, J. Magn. Reson., 1978, 30, 193.
- 696. D. F. Gaines, K. M. Coleson and D. F. Hillenbrand, J. Magn. Reson., 1981, 44, 265.
- 697. H. Fisch, H. Pritzkow and W. Siebert, Angew. Chem., 1984, 96, 595; Angew. Chem. Int. Ed. Engl., 1984, 23, 608.
- 698. P. C. Lauterbur, R. C. Hopkins, R. W. King, D. V. Ziebarth and C. W. Heitsch, Inorg. Chem., 1968, 7, 1025.
- 699. K. Hensen and K. P. Messer, Theor. Chim. Acta, 1967, 9, 17.
- 700. R. Köster and B. Wrackmeyer, Z. Naturforsch., 1981, 36b, 704.
- 701. B. Wrackmeyer, Z. Naturforsch., 1982, 37b, 412.
- R. Köster, G. Seidel and B. Wrackmeyer, Angew. Chem., 1984, 96, 520; Angew. Chem. Int. Ed. Engl., 1984, 23, 512.
- 703. T. L. Venable, C. T. Brewer and R. N. Grimes, Inorg. Chem., 1985, 24, 4751.
- (a) P. Laszlo (ed.), NMR of Newly Accessible Nuclei, Vols 1 and 2, Academic Press, London, 1983.
 - (b) J. B. Lambert and F. G. Riddell (eds), *The Multinuclear Approach to NMR Spectroscopy*, Reidel, Dordrecht, 1983.
- R. Wehrmann, H. Klusik and A. Berndt, Angew. Chem., 1984, 96, 810; Angew. Chem. Int. Ed. Engl., 1984, 23, 826.
- 706. R. E. DePoy and G. Kodama, Inorg. Chem., 1985, 24, 2871.
- 707. R. H. Cragg and T. J. Miller, J. Organomet., Chem., 1983, 241, 289, and references cited therein.
- 708. N. M. D. Brown, F. Davidson and J. W. Wilson, J. Organomet. Chem., 1981, 209, 1.
- N. M. D. Brown, F. Davidson, R. McMullan and J. W. Wilson, J. Organomet. Chem., 1980, 193, 271.
- 710. Y. Yamamoto and I. Moritani, J. Org. Chem., 1975, 40, 3434.
- 711. R. Köster, G. Seidel and B. Wrackmeyer, Chem. Ber., 1987, 120, 669.
- 712. B. G. Ramsey and K. Longmuir, J. Org. Chem., 1980, 45, 1322.
- 713. C. D. Blue and D. J. Nelson, J. Org. Chem., 1983, 48, 4538.
- 714. J. R. Durig, S. A. Johnston, T. F. Moore and J. D. Odom, J. Mol. Struct., 1981, 72, 85.
- 715. R. Köster, P. Idelmann and W. V. Dahlhoff, Synthesis, 1982, 650.
- M. E. Gurskii, S. V. Baranin, A. S. Shashkov, A. I. Lutsenko and B. M. Mikhailov, J. Organomet. Chem., 1983, 246, 129.
- 717. J. Mason, J. Chem. Soc. Faraday Trans. II, 1979, 75, 607.
- 718. G. A. Olah, R. J. Spear, P. W. Westerman and J. M. Denis, J. Am. Chem. Soc., 1974, 96, 5855.
- 719. J. E. Richman, N.-C. Yang and L. L. Andersen, J. Am. Chem. Soc., 1980, 102, 5790.
- 720. B.-L. Li and R. H. Neilson, Inorg. Chem., 1986, 25, 361.
- 721. B.-L. Li, M. A. Goodman and R. H. Neilson, Inorg. Chem., 1984, 23, 1368.

- 722. M. E. Gurskii, A. S. Shashkov and B. M. Mikhailov, Izv. Akad. Nauk SSSR Ser. Khim., 1981, 341.
- 723. L. J. Todd, Pure Appl. Chem., 1972, 30, 587.
- 724. N. A. Kutz and J. A. Morrison, Inorg. Chem., 1980, 19, 3295.
- R. Benn and A. Rufinska, Angew. Chem., 1986, 98, 851; Angew. Chem. Int. Ed. Engl., 1986, 25, 861.
- R. Wehrmann, C. Pues, H. Klusik and A. Berndt, Angew. Chem., 1984, 96, 372; Angew. Chem. Int. Ed. Engl., 1984, 23, 372.
- C. Bihlmayer, S. T. Abu-Orabi and B. Wrackmeyer, J. Organomet. Chem., 1987, 322, 25.
- 728. S. Kerschl and B. Wrackmeyer, J. Organomet. Chem., 1987, 332, 25.
- 729. M. Oki, Application of Dynamic NMR Spectroscopy to Organic Chemistry, VCH, Weinheim, 1985.
- 730. R. Köster, G. Seidel, S. Kerschl and B. Wrackmeyer, Z. Naturforsch., 1987, 42b, 191.
- 731. H. Kessler, G. Zimmermann, H. Fietze and H. Möhrle, Chem. Ber., 111, 2605.
- 732. H. C. Brown, G. G. Pai and R. G. Naik, J. Org. Chem., 1984, 49, 1972.
- 733. G. Hunter, W. S. Wadsworth and K. Mislow, Organometallics, 1982, 1, 968.
- T. Burgemeister, R. Grobe-Einsler, R. Grotstollen, A. Mannschreck and G. Wulff, Chem. Ber., 1981, 114, 3403.
- 735. S. Kerschl and B. Wrackmeyer, J. Chem. Soc. Chem. Commun., 1986, 403.
- 736. R. H. Cragg and T. J. Miller, J. Organomet. Chem., 1981, 217, 283.
- C. Brown, R. H. Cragg, T. J. Miller and D. O'N. Smith, J. Organomet. Chem., 1983, 244, 209.
- C. Brown, R. H. Cragg, T. J. Miller and D. O'N. Smith, J. Organomet. Chem. 1985, 296, C17.
- 739. R. H. Cragg, T. J. Miller and D. O'N. Smith, J. Organomet. Chem., 291, 273.
- 740. N. M. D. Brown, F. Davidson and J. W. Wilson, J. Organomet. Chem., 1981, 210, 1.
- 741. R. J. Spear, D. A. Forsyth and G. A. Olah, J. Am. Chem. Soc., 1976, 98, 2493.
- 742. K. K. Curry and J. W. Gilje, J. Am. Chem. Soc., 1978, 100, 1442.
- H. Nöth and S. Weber, Angew. Chem., 1984, 96, 998; Angew. Chem. Int. Ed. Engl., 1984, 23, 994.
- 744. B. Wrackmeyer, J. Organomet. Chem., 1986, 310, 151.
- 745. B. Wrackmeyer, C. Bihlmayer and M. Schilling, Chem. Ber., 1983, 116, 3182.
- 746. B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 1985, 16, 73.
- 747. W. Biffar, T. Gasparis-Ebeling, H. Nöth, W. Storch and B. Wrackmeyer, J. Magn. Reson., 1981, 44, 54.
- 748. R. Schlögl and B. Wrackmeyer, Polyhedron, 1985, 4, 885.
- 749. S. Kerschl and B. Wrackmeyer, J. Chem. Soc. Chem. Commun., 1985, 1199.
- 750. A. Sebald, P. Seiberlich and B. Wrackmeyer, J. Organomet. Chem., 1986, 303, 73.
- 751. A. Sebald and B. Wrackmeyer, J. Organomet. Chem., 1986, 307, 157.
- 752. S. Kerschl and B. Wrackmeyer, Z. Naturforsch., 1986, 41b, 890.
- 753. S. Kerschl, B. Wrackmeyer, A. Willhalm and A. Schmidpeter, J. Organomet. Chem., 1987, 319, 49.
- 754. S. Kerschl and B. Wrackmeyer, Z. Naturforsch., 1984, 39b, 1037.
- 755. C. Bihlmayer and B. Wrackmeyer, Z. Naturforsch., 1981, 36b, 1265.
- 756. C. Bihlmayer, S. Kerschl and B. Wrackmeyer, Z. Naturforsch., 1987, 42b, 715.
- 757. B. Wrackmeyer, J. Organomet. Chem., 1981, 205, 1.
- 758. A. G. Massay, Adv. Inorg. Radiochem., 1983, 26, 1.
- H. Schmidbaur and E. Weiß, Angew. Chem., 1981, 93, 300; Angew. Chem. Int. Ed. Engl., 1981, 20, 283.
- A. N. Esaulenko, Yu. N. Shevchenko, M. A. Porai-Koshits, S. I. Tyukhtenko, G. A. Kukina and V. V. Trachevskii, *Dokl. Akad. Nauk SSSR*, 1986, 286, 381.

- H. Schmidbaur, G. Müller, K. C. Dask and B. Milewski-Mahrla, Chem. Ber., 1981, 114, 441.
- 762. J. A. Marsella and K. G. Caulton, J. Am. Chem. Soc., 1982, 104, 2361.
- 763. M. Lauer and G. Wulff, J. Organomet. Chem., 1983, 256, 1.
- 764. H. Schmidbaur, G. Müller and G. Blaschke, Chem. Ber., 1980, 113, 1480.
- 765. R. Janta, R. Maisch, W. Malisch and E. Schmid, Chem. Ber., 1983, 116, 3951.
- 766. (a) J. W. Emsley, L. Phillips and V. Wray, Prog. NMR Spectrosc., 1976, 10, 83.
 - (b) V. Wray, Ann. Rep. NMR Spectrosc., 1980, 10B, 1.
 - (c) V. Wray, Ann. Rep. NMR Spectrosc., 1983, 14, 1.
- M. T. Reetz, M. Hüllmann, W. Massa, S. Berger, P. Rademacher and P. Heymanns, J. Am. Chem. Soc., 1986, 108, 2405.
- 768. J. S. Hartman, B. D. McGarvey and C. V. Raman, Inorg. Chim. Acta, 1981, 49, 63.
- 769. H. Bürger, M. Grunwald and G. Paweike, J. Fluor. Chem., 1985, 28, 183.
- H. Bönnemann, Angew. Chem., 1985, 97, 264; Angew. Chem. Int. Ed. Engl., 1985, 24, 248.
- 771. R. Köster, G. Seidel and B. Wrackmeyer, Unpublished results.
- 772. A. Sebald and B. Wrackmeyer, J. Chem. Soc. Chem. Commun., 1983, 309.
- 773. A. Sebald and B. Wrackmeyer, J. Chem. Soc. Chem. Commun., 1983, 1293.
- 774. H. Nöth, Nachr. Chem. Techn. Lab., 1984, 32, 956.
- 775. P. Kölle, Dissertation, Universität München, 1987.
- 776. H. Binder, W. Matheis, H.-J. Deiseroth and H. Fu-San, Z. Naturforsch., 1983, 38b, 554.
- 777. B. M. Mikhailov, V. V. Negrebetskii, V. S. Bogdanov, A. V. Kessenikh, Yu. N. Bubnov, T. K. Baryshnikova and V. N. Smirnov, Zh. Obshch. Khim., 1974, 44, 1878.
- 778. L. Zetta and G. Gatti, Org. Magn. Reson., 1972, 4, 585.
- 779. B. Wrackmeyer, J. Organomet. Chem., 1985, 297, 265.
- 780. (a) M. M. Crutchfield, C. H. Dungan, J. H. Letcher, V. Mark and J. R. van Wazer, Top. Phosphorus Chem., 1967, 5.
 - (b) G. Mavel, Ann. Rep. NMR Spectrosc., 1973, 513, 1.
 - (c) D. G. Gorenstein (ed.), *Phosphorus-31 NMR*, *Principles and Application*, Academic Press, New York, 1984.
- 781. P. Jutzi and P. Galow, J. Organomet. Chem., 1987, 319, 139.
- P. B. Hitchcock, M. F. Lappert and R. G. Taylor, J. Chem. Soc. Chem. Commun., 1984, 1082.
- 783. C. J. Cardin, H. E. Parge and J. W. Wilson, J. Chem. Res. (S), 1983, 93; (M), 1983, 0801.
- 784. R.-J. Binnewirtz, H. Klingenberger, R. Welte and P. Paetzold, *Chem. Ber.*, 1983, 116, 1271.
- 785. M. K. Das and P. Mukherjee, J. Chem. Res. (S), 1985, 66.
- 786. E. Kalbarczyk and S. Pasynkiewicz, J. Organomet. Chem., 1984, 262, 11.
- Y. F. Beswick, P. Wisian-Neilson and R. H. Neilson, J. Inorg. Nucl. Chem., 1981, 43, 2639.
- 788. E. Hohaus, Z. Anorg. Allg. Chem., 1983, 506, 185.
- 789. H.-U. Hürter, B. Krebs, H. Eckert and W. Müller-Warmuth, *Inorg. Chem.*, 1985, 24, 1288.
- 790. P. Zanirato, J. Organomet. Chem., 1985, 293, 285.
- 791. K. Sasakura, Y. Terui and T. Sugasawa, Chem. Pharm. Bull., 1985, 33, 1836.
- 792. H. Yatagai, Y. Yamamoto and K. Maruyama, J. Am. Chem. Soc., 1980, 102, 4548.
- 793. H. C. Brown and J. C. Chen, J. Org. Chem., 1981, 46, 3978.
- 794. F. Alam and K. Niedenzu, J. Organomet. Chem., 1982, 240, 107.
- 795. Y. Yamamoto, H. Yatagai and K. Maruyama, J. Am. Chem. Soc., 1981, 103, 1969.
- 796. R. W. Hoffman and H.-J. Zeiß, J. Org. Chem., 1981, 46, 1309.
- 797. L. Bhal, R. V. Singh and J. P. Tandon, Acta Chim. Hung., 1984, 115, 251.
- 798. P. G. M. Wuts and P. A. Thompson, J. Organomet. Chem., 1982, 234, 137.

- S. Allaoud, H. Bitar, M. El Mouhtadi and B. Frange, J. Organomet. Chem., 1983, 248, 123.
- R. Ahmad, J. E. Crook, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc. Dalton Trans., 1986, 2433.
- 801. A. H. Cowley, J. E. Kilduff and J. C. Wilburn, J. Am. Chem. Soc., 1981, 103, 1575.
- 802. H. Schmidbaur, E. Weiß and G. Müller, Synth. React. Inorg. Met.-Org. Chem., 1985, 15, 401.
- 803. H. Schmidbaur, E. Weiß and G. Müller, Synth. React. Inorg. Met.-Org. Chem., 1985, 15, 415.
- 804. S. Schramm and E. Oldfield, J. Chem. Soc. Chem. Commun., 1982, 980.
- 805. I. A. Harris and P. J. Bray, Phys. Chem. Glasses, 1984, 25, 69.
- 806. T. M. Duncan, J. Am. Chem. Soc., 1984, 106, 2270.
- C. Conard, M. Bouchacourt, F. Thevenot and G. Hermann, J. Less-Common Met., 1986, 117, 51.
- 808. E. C. Reynhardt, J. Magn. Reson., 1986, 69, 337.
- 809. C. Bihlmayer, S. T. Abu-Orabi and B. Wrackmeyer, J. Organomet. Chem., 1987, 322, 25.
- 810. T. Mancilla and R. Contreras, J. Organomet. Chem., 1987, 321, 191.
- 811. G. Schmid and G. Barbenheim, Chem. Ber., 1987, 120, 401.
- 812. B. Glaser and H. Nöth, Chem. Ber., 1987, 120, 345.
- 813. J. G. Dawber and S. I. E. Green, J. Chem. Soc. Faraday Trans. I, 1986, 82, 3407.
- 814. B. A. Arbuzov, G. N. Nikonov and O. A. Erastov, Izv. Akad. Nauk. SSSR Ser. Khim., 1986, 171.
- E. G. Ippolitov, B. N. Chernyshov, G. P. Shchetinina, O. V. Brovkina, Yu. L. Martynyuk and Yu. V. Gorin, *Ukr. Khim. Zh.*, 1986, 52, 818; CA, 1987, 106, 42927v.
- 816. R. K. Kanjolia, C. L. Watkins and L. K. Krannich, Inorg. Chem., 1987, 26, 222.
- 817. K. Stumpf, W. Siebert, R. Köster and G. Seidel, Z. Naturforsch., 1987, 42b, 186.
- 818. J. Fritze, W. Preetz and H. C. Marsmann, Z. Naturforsch., 1987, 42b, 287.
- 819. B. F. Spielvogel, F. U. Ahmed and A. T. McPhail, Synthesis, 1986, 833.
- 820. B. M. Mikhailov, M. E. Gurskii, S. V. Baranin, Yu. N. Bubnov, M. V. Sergeeva, A. I. Yanowskii, K. A. Potekhin, A. V. Maleev and Yu. T. Truchkov, *Izv. Akad. Nauk SSSR Ser. Khim.*, 1986, 1645.
- 821. M. T. Reetz, F. Kunisch and P. Heitmann, Tetrahedron Lett., 1986, 4721.
- 822. J. Marcalo, N. Marques, A. Pires de Matos and K. W. Bagnall, J. Less-Common Met., 1986, 122, 219.
- 823. R. Köster and M. Yalpani, J. Org. Chem., 1986, 51, 3054.
- 824. C. E. Housecroft and A. L. Rheingold, J. Am. Chem. Soc., 1986, 108, 6420.
- 825. H. C. Brown, M. V. Rangaishenvi and U. S. Racherla, J. Org. Chem., 1987, 52, 728.
- G. E. Herberich, B. Heßner, M. Negele and J. A. K. Howard, J. Organomet. Chem., 1987, 336, 29.
- 827. E. Gamp, R. Shinomoto, N. Edelstein and B. R. McGarvey, *Inorg. Chem.*, 1987, 26, 2177.
- 828. M. M. Olmstead, P. P. Power and K. J. Weese, J. Am. Chem. Soc., 1987, 109, 2541.
- 829. G. Schmid, O. Boltsch and R. Boese, Organometallics, 1987, 6, 435.
- 830. R. Boese, B. Kröckert and P. Paetzold, Chem. Ber., 1987, 120, 1913.
- 831. R. Boese, P. Paetzold and A. Tapper, Chem. Ber., 1987, 120, 1069.
- 832. H. Binder, A. Ziegler, R. Ahlrichs and H. Schiffer, Chem. Ber., 1987, 120, 1545.
- 833. K. Geilich, K. Stumpf, H. Pritzkow and W. Siebert, Chem. Ber., 1987, 120, 911.
- 834. M. Yalpani, R. Boese and R. Köster, Chem. Ber., 1987, 120, 607.
- U. Siwardane, M. S. Islam, T. A. West, N. S. Hosmane, J. A. Maguire and A. H. Cowley, J. Am. Chem. Soc., 1987, 109, 4600.

This Page Intentionally Left Blank

¹¹B NMR Spectroscopy

A. R. SIEDLE

3M Corporate Research Laboratories, St Paul, Minnesota 55144, USA

I.	Introduction	205
II.	Spectroscopic techniques and general results	206
III.	Analytical applications	208
IV.	One-boron compounds	209
	A. Analogues of pharmacologically active compounds	209
	B. Cationic boron compounds	209
	C. Compounds with multiple bonds to boron and small-ring boron	
	compounds	212
	D. Pyrazaboles	217
	E. Boron-containing heterocycles	219
	F. Alkylboranes and related compounds	225
	G. Other one-boron compounds	229
V.	Polyboranes and carboranes	233
	A. $B_{2,3}$ boranes and carboranes	233
	B. B ₄ boranes and carboranes	235
	C. B_5 boranes and carboranes	237
	D. $B_{6,8,9}$ boranes and carboranes	240
	E. $B_{10,11,12}$ boranes and carboranes	251
VI.	Metalloboranes and metallocarboranes	254
	A. B ₁ metalloboranes and metallocarboranes	254
	B. $B_{2,3,4}$ metalloboranes and metallocarboranes	259
	C. B _{5,7,8} metalloboranes and metallocarboranes	263
	D. B ₉ metalloboranes and metallocarboranes	275
	E. B_{10} and larger metalloboranes and metallocarboranes	285
VII.	Coupled boranes and carboranes	294
	Transition-metal complexes of boron-containing heterocycles	299
IX.	¹¹ B NMR studies of solids	302
	Acknowledgments	305
	Deferences	306

I. INTRODUCTION

This chapter covers developments in ¹¹B NMR spectroscopy subsequent to a previous review in this series. ¹ In addition, it serves to complement the preceding chapter. As in previous years, a major use of ¹¹B has been archival—that is, use for routine characterization of new compounds—

although considerable efforts to elucidate correlations between structure and NMR parameters continue. However, some significant trends may be noted. First, availability of high-field spectrometers with multinuclear capability as well as software for sophisticated data manipulation is increasingly common, and, with these instruments, lack of chemical-shift dispersion in the face of relatively large linewidths presents much less of a problem than previously when complex polyboron compounds are to be characterized. Coupled with this, potent separation techniques, exemplified by thin-layer, high-pressure and ion-exchange chromatography, are able to unravel complex mixtures and make pure compounds available for study. Use of X-ray crystallographic facilities with which to structurally characterize compounds whose spectra are reported is today almost routine. Less routine is an appreciation of the fact that one crystal teased from a reaction mixture is not necessarily representative of the system from which it was extracted; use of X-ray powder-diffraction analysis to test this hypothesis is to be encouraged. Thus inability to separate mixtures, to secure high-resolution spectra and structural data are of decreasing importance in boron chemistry, leaving, perhaps, as the rate-limiting factors, creativity and the propensity to select for detailed study systems that offer new, significant and fundamental insights into the chemistry of boron and of the elements to which it bonds.

The chemical-shift convention used here has positive shifts to high frequency of the reference, external BF₃·Et₂O. It is questionable, at least in some cases, whether chemical shifts can be measured with a precision of ± 0.01 ppm and so values reported are rounded off to within 0.1 ppm. Couplings are given in Hz and rounded off to the nearest Hz; symbols for peak multiplicities are s (singlet), d (doublet), t (triplet) and q (quartet). Relative intensities are represented by nB. Chemical shifts are followed by, in parentheses, multiplicity, $J_{\rm BH}$ (unless otherwise specified), additional coupling, and peak assignment or relative intensity.

II. SPECTROSCOPIC TECHNIQUES AND GENERAL RESULTS

There is little doubt that the most significant developments in technique are those related to two-dimensional or COSY ^{11}B NMR spectroscopy. 2,3 Boron-boron connectives may be directly determined by *J*-correlated two-dimensional NMR spectroscopy, and this is of great value in interpretation of spectra of complex molecules. A detailed description of the method has been presented and results obtained for 1,2- and 1,7- $B_{10}C_2H_{12}$, 2,3- $Et_2B_4C_2H_5$, $Et_2B_4C_2H_6$, (B_5H_8)₂Hg, μ -4,5-ClHg[Me₅CpCo(Me₂B₃C₂H₄)], (Me₆C₆)Fe(Et₂B₃C₂H₅), CpCoB₄H₈ and

Me₄B₇C₄H₉. The 2D spectrum of 5-Me₅CpCoB₈H₁₃ (Fig. 1) is an example of what has been achieved.

Cross-peaks appear when four conditions are met: (1) there is sufficient electron density between ¹¹B nuclei to permit scalar coupling so that B—H—B borons usually do not cross-couple; (2) the two nuclei are not decoupled by a longitudinal relaxation time T_1 that is short relative to the reciprocal of the coupling, i.e. $2\pi J T_1 \ll 1$; (3) transverse relaxation times, T_2 , are long enough to permit loss of cross-peak signals through signal decay;

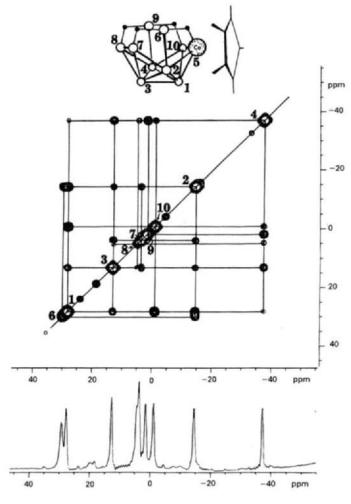


FIG. 1. Spectrum of 5-[C₅Me₅]CoB₉H₁₃ in n-hexane.

(4) the individual resonances are resolved in the 1D spectrum. This last requirement makes the use of high-field spectrometers important. Because scalar coupling propagates through bonding electrons, 2D NMR provides a qualitative picture of bonding-electron density in a molecule.

Two-dimensional ¹H-¹H NMR (with broadband ¹¹B decoupling) has also been applied to Me₅CpRhB₉H₁₃. The advantages of this technique are (i) observation of ³J(H-B-B-H) when the corresponding ²J(B-B) correlation is unapparent; (ii) larger chemical-shift dispersion in the ¹H spectrum; and (iii) bridging protons show correlations.⁴

Reports of relaxation times are becoming increasingly common. For $B_{10}H_{14}$ in toluene- d_8 , T_1 depends only on the rotational correlation time, τ_R , when isotropic tumbling occurs. With increasing temperature, T_1 increases and τ_R decreases.⁵

The effect of solvent on ^{11}B NMR parameters for $B_{10}H_{14}$ has been reported. In low-polarity solvents, such as n-pentane, an 18 Hz coupling between B(2,4) and B(6,0) may be resolved with the use of line narrowing. The coupling is obscured in higher-molecular-weight solvents such as n-octane and C_6F_6 , probably because of the effect of viscosity on the correlation times.

The magnitude of J(BH) in an extensive series of carboranes has been correlated with structural features:

$$J(BH) = \frac{-2.08(13.4)^{c^2} \theta}{449^c} + \frac{394(1.69)^{c^2}}{3.87^c} ,$$

where c is the number of contiguous cage carbon atoms and θ , the "umbrella angle", is the average interior angle of a conical-shaped figure having the BH unit at the apex.⁷

III. ANALYTICAL APPLICATIONS

¹¹B NMR spectroscopy has been used as an analytical tool to monitor reactions of various boron-containing compounds. Examples include $BH_{4-x}R_x^-$ derivatives obtained from RLi and $BH_3 \cdot L$ (L = THF, Me_2S , Me_3N), and from Grignard reagents. Considerable work has been done on the cleavage of μ-Me₂NB₂H₅, B₄H₁₀ and B₃H₇·THF with tetramethylphenylenediamine. Also studied have been reactions of B₅H₁₁ with $B_2H_4 \cdot (PMe_3)_2$, of $B_3H_6 (PMe_3)_2^+B_3H_8^-$ with Lewis bases, B₆H₁₀ and B_4H_{10} with Me_3P , Me_3P ,

IV. ONE-BORON COMPOUNDS

A. Analogues of pharmacologically active compounds

Boron analogues of amino acids have been prepared. Chemical shifts of some examples are given in Table 1. 17,18 Data are also included for metal complexes of $Me_3N\cdot BH_2CO_2^-$ in which the carboxylate moiety functions as a bidentate ligand. 19

Boron analogues of uracils, 1,3,5-triaza-2-phenyl-2-boracyclohexan-4,6-diones, have been prepared. Their ¹¹B spectra comprise broad (half-width 425–600 Hz) singlets at 32–36 ppm. ²⁰ CH₃CO₂C₂H₄NMe₂·BH₃, $\delta^{11}B = -9.4$ (q, 98) was also synthesized. ²¹ Shifts for Na[BH₂(CN)₂] and Bu₄N[BH₂(CN)₂] are -36.4 (t, 93, DMSO) and -41.4 (CDCl₃ solvent) ppm respectively; the difference may be an effect of ion pairing. ²²

TABLE $\,1^{11}$ B Chemical shifts of boron analogues of amino acids.

Compound	δ^{11} B (J (B–H))
Me ₃ N·BH ₂ CO ₂ Et	-9.2 (98)
Me ₃ N·BH ₂ CO ₂ Me	-9.1(99)
Me ₂ NH·BH ₂ CO ₂ Me	-12.6(95)
MeNH ₂ ·BH ₂ CO ₂ Me	-16.2(98)
Me ₃ N·BH ₂ CO ₂ C ₂ H ₄ Cl	-8.8(97)
NH ₃ ·BH ₂ CO ₂ Me	-20.5(94)
Me ₃ N·BH ₂ CONHEt	-7.4
Me ₂ NH·BH ₂ CONHEt	-11.6
MeNH ₂ ·BH ₂ CONHEt	-15.4
NH ₃ ·BH ₂ CONHEt	-19.6
$Me_3N \cdot BH_2CO_2H$	-10.2(98)
$Na[Me_3N\cdot BH_2CO_2]$	-8.8(93)
cis-Co(en) ₂ (Me ₃ ·BH ₂ CO ₂) ₂	-9.4(95)
Co(Me ₃ N·BH ₂ CO ₂)(NO ₃)·MeCN·3MeOH	-11.0(103)
$Ca(Me_3N \cdot BH_2CO_2)(NO_3) \cdot Me_2CO \cdot 0.5H_2O$	-9.0(95)
Zn(Me ₃ N·BH ₂ CO ₂)(NO ₃)·EtOH	-9.7(98)

B. Cationic boron compounds

Recent developments in the chemistry and ^{11}B NMR spectroscopy of borinium, $(R_2N)_2B^+$, and borenium, $R_2B(donor)^+$, cations have been extensively reviewed. $^{23-25}$

Halide abstraction from $(R_2N)_2BX$ yields $(R_2N)_2B^+$, which have ¹¹B chemical shifts of about 5–8 ppm to high frequency of their precursors.

Typical shielding values are in the 35–38 ppm range, but the linewidths increase greatly to $400-800\,\mathrm{Hz}$ owing to more rapid relaxation associated with the increase in nuclear field gradient. Trialkylsilyl substitution at nitrogen further deshields the boron nucleus, but replacement of one R_2N group by t-Bu₃SiO– has the opposite effect.

The ¹¹B chemical shifts of $R_2B(donor)^+$ salts are in the 24–32 ppm range with large linewidths. Alkyl substitution produces low-frequency shifts, e.g. $[Bu_2B(2,6\text{-lutidine})]CF_3SO_3$, $\delta^{11}B=54.7$, and $[9\text{-borobicycloborenium}(2,6\text{-lutidine})]CF_3SO_3$, $\delta^{11}B=59.2$. In solution, these compounds are in equilibrium with $R_2BOSO_2CF_3$ and free 2,6-lutidine. In contrast, $[Ph_2B(2,6\text{-lutidine})]CF_3SO_3$ is in equilibrium with four-coordinate $Ph_2BOSO_2CF_3 \cdot 2,6\text{-lutidine}$.

A wide variety of trimethylsilylaminoboranes have been found to react with BBr₃ to give (silylamino)boronium BBr₄ salts. ¹¹B data for these and the precursors are given in Table 2.

A series of N-substituted haloboranes of the type (TMP)B(NEt₂)X (TMP is 2,2,6,6-tetramethylpiperidinyl) has been prepared. For X = F, Cl, Br and I, $\delta^{11}B$ (halfwidth) values are 25.9 (201), 31.0 (189), 29.9 (164) and

TABLE 2

11B Chemical shifts for some boronium salts.

	δ^{11} B	δ^{11} B
(Me_3C) BF (Me_3Si)	27.1	×N−B=N+ 5.4
$\binom{Me_3C}{Me_3Si}N_2B^+BBr_4^-$	35.2 -24.5	$\times N = B - N \xrightarrow{3} + I^{-} $ 36.1
Me_3C $N-B$ $N(SiMe_3)_2$	26.9	N-B N N N N N N N
Me_3C $N=B-N$ $SiMe_3$ $+$ BBr_4 $SiMe_3$	32.8 -24.5	Me ₃ Si
Me_3C Me_3Si $N-B$ $N(SiMe_3)_2$	26.9	$N-B=N$ $SiMe_3$ -24.5
Me_3C $N=B-N$ $SiMe_3$ BBr_4 $SiMe_3$	33.3 -24.5	$ \begin{array}{ccc} Me_3C \\ N-B \equiv N-CMe_3 \end{array} $ 7.0
[(Me ₃ Si) ₂ N] ₂ BF	27.1	$\begin{pmatrix} Me_3C \\ Me_3Si \end{pmatrix} N B^+ I^- $ 36.1
$[(Me_3Si)_2N]_2B^+BBr_4^-$	32.8 -24.5	·

D = D'		δ ¹⁹ F	J(19F-11B)	δ ¹¹ Β
Pyridine Q	-	-155.6 -161.5	22.9 39.5	1.8 1.4
Me ₃ N Me ₂ NEt MeNEt ₂ Et ₃ N		-165.4 -158.9	36.2 39.3	1.9 2.3
Pyridine Me ₃ N Me ₂ NEt MeNEt ₂ Et ₃ N	Q Q Q Q	-161.3 -163.7 -159.9 -155.2 -148.4	28.6 38.1 38.8 40.5 43.0	1.6 1.5 1.8 1.9 2.2

TABLE 3

11B NMR data for (amine)₂BF₂⁺ cations.

Q = 1-azabicyclo[2.2.2]octane.

26.0 (214) respectively. These compounds undergo halide abstraction to form [(TMP)BNEt₂]Y, whose ¹¹B shifts range from 35.4 (Y = TaBr₆) to 38.6 (Y = AlBr₄). Similarly, δ^{11} B in [(TMP)₂B]Y ranges from 35.0 (Y = BF₄) to 36.1 (Y = CF₃SO₃). ²⁴ ¹¹B spectra of compounds previously considered to be 1,3,2-dioxaborinium salts reveal the presence of covalent four-coordinate boron. ²⁷ Tertiary amines, D, having low steric hindrance, displace Br⁻ from D'BrBF₂ to form bis(amine)difluoroboron DD'BF₂ salts, whose ¹¹B shifts are given in Table 3.

Borinium salts may be considered to contain formal two-coordinate boron. Five- and six-coordinate boron compounds, connected by fractional bonds in clusters, are well known, but such coordination in "simple" B_1 compounds is a recent development. Materials proposed to have these bonding features, i.e. hypervalent boron, have ¹¹B shieldings greater than those of compounds containing normal, four-coordinate boron, for example Bu_4B^- , $\delta^{11}B=-17.5$. This is illustrated by structures [1]–[6] and the corresponding chemical shifts:²⁹

F₃C
$$CF_3$$
 F₃C CF_3 R

 F_3C CF_3 O H F_3C CF_3 O F_3C CF_3
 F_3C CF_3 F_3C CF_3
 F_3C F_3C

C. Compounds with multiple bonds to boron and small-ring boron compounds

Research in this area has progressed with a renaissance of interest in multiply bonded nonmetallic elements. Pyrolysis of Ar₂BN₃ (Ar is a general aryl group) presumably generates the nitrene Ar₂BN as a transient species, but this rearranges to the iminoborane ArB=NAr, which is not isolated but has a prolific chemistry as shown in Fig. 2.³⁰

The chemistry of iminoboranes is also well developed. 31-34 Gasphase pyrolysis of t-Bu(Cl)B-N(t-Bu)SiMe₃ yields the iminoborane t-BuB=N-t-Bu, whose ¹¹B chemical shift, 2.4 ppm, reveals boron in a greatly shielded environment; the chemical shift of its cyclic dimer is 41.0 ppm. This highly reactive iminoborane adds Et₃B to form t-Bu(Et)B=N(t-Bu)BEt2, in which the shifts of the four- and threecoordinate boron are 44.8 and 76.8 ppm respectively, i.e. the B=N bond is localized. Addition of Me₃SiN₃ gives t-Bu(N₃)B-N(t-Bu)SiMe₃, $\delta^{11}B = 50.8$. but cvclic 1,2-di-t-butyl-5-phenyl-1-boratetrazole, $\delta^{11}B = 28.1$, is formed from PhN₃. Similarly, elimination at high temperature of Me₃SiF from (Me₃Si)₃SiB(F)—N(SiMe₃)₂, δ^{11} B = 44.6, produces the iminoborane $(Me_3Si)_3B=NSiMe_3$, $\delta^{11}B=21.9$, whose stability is probably due to steric factors.³⁴ The iminoborane i-PrB=N-t-Bu cyclotrimerizes to form (i-PrB-N-t-Bu)3, whose X-ray structure discloses a significant (1.75 Å) 1,4 B—N contact; it is thus a Dewar borazine. How-

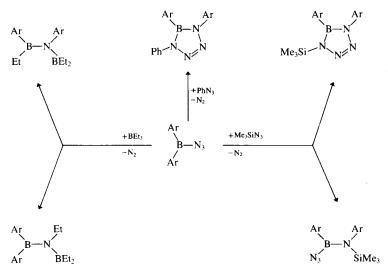


FIG. 2. Reactions of (aryl)₂BN₃.

ever, the ¹¹B NMR spectrum comprises a singlet at 31.1 ppm, indicative of a dynamical process within the ring.³⁵ An aminoiminoborane has been prepared by converting (TMP)BCl₂ (δ^{11} B = 33.0, halfwidth 50) to (TMP)B(Cl)NH-t-Bu (δ^{11} B = 30.4, halfwidth 126). This, on loss of HCl, forms (TMP)B=N-t-Bu (δ^{11} B = 4.1, halfwidth 102). It forms 1:1 complexes with BX₃ (X = Cl, 27.5 ppm (halfwidth 25); X = Br, 25.9 ppm, (halfwidth 35)), which contain a B₂N₂ ring resulting from formal addition of BX₂ and X across the B=N bond: ³⁶

$$N$$
 B
 N
 B
 N
 B
 X_2

Likewise, dehydrohalogenation of 9-fluorenyltetramethylpiperidinoboranes of the type (TMP)B(X)CHR (R = 9-fluorenyl) (X = F, δ^{11} B = 33.9; X = Cl, 42.3 ppm; X = OMe, 34.3; $X = NMe_2$, 37.9) yields the allene analogue (TMP)=B=CR, δ^{11} B = 59.2. This compound is highly reactive and is the precursor of a wide variety of new materials. Reaction with Ph₂CO yields (TMP)B(O)CRCPh₂, δ^{11} B = 36.9, which contains a four membered B—C—C—O ring. Reaction with R'N₃ yields the three membered ring compound [7]:

$$R_2C$$
 $B(TMP)$ [7]

 $(R' = Ph, \delta^{11}B = 21.3; R' = Me_3Si, 24.0)$. In these cyclic species, boron is deshielded relative to the precursors and the shift is in the range appropriate for three-coordinate boron.³⁷

Protic reagents readily add to the formal B≡N bonds in iminoboranes to yield adducts of the type RB(X)=NHR'. Some ¹¹B chemical-shift data are collected in Table 4.38 11B data for some addition products of aminoiminoboranes have been published, e.g. (TMP)B(OSO₂CF₃)-[N(Me)t-Bu], 38 δ^{11} B = 23.9, and [(TMP)B=N(SiMe₃)t-Bu]I, δ^{11} B = 35.9. 39'11B chemical shifts for adducts of the type (TMP)B(X)—N(H)t-Bu (X = OH, OR, OCOR, NH₂, NHR) are in the range 25 ± 2 ppm except for X = SEt (37.5 ppm) and S-t-Bu (34.7 ppm). ⁴⁰ Addition of bromine to RB=N-t-Bu affords R(Br)B=N(Br)t-Bu. ¹¹B chemical shifts for these adducts are in the range 41.5-45.5 ppm for R = alkyl, 29.9 ppm for $R = Me_3Si(t-Bu)N$ and 35.3 for $R = C_6F_5$. Bromine attached to nitrogen exchanges with hydrogen in the alkyl group to give, e.g. BrCH₂— $CMe_2B(Br)=N(t-Bu)H$, $\delta^{11}B=39.6$. This compound loses C_4H_8 to form $Br_2B = N(t-Bu)H$, $\delta^{11}B = 24.6$. The dimeric aldiminoborane $(PhCH = NBMe_2)_2$ has $\delta^{11}B = 5.3$, which is appropriate for four-coordinate boron. The tris(ketiminoborane) (t-Bu₂C=N)₃B, δ^{11} B = 22.8, formally contains three-coordinate boron, but d(B-N) is quite short, 1.39(1) Å.⁴¹

Boron-phosphorus multiple bonds with $d(B-P)=1.83\,\text{Å}$ and planar boron and phosphorus are found in $[\text{Li}(\text{Et}_2\text{O})_2]\text{RP} = \text{B}(\text{mes})_2$ (mes is 2,4,6-mesityl) (R = Ph, $\delta^{11}\text{B} = 65.4$; R = c-C₆H₁₁}, 65.6; R = mes, 63.7). Likewise, Ph₂P=B(mes)₂, $\delta^{11}\text{B} = 51.7$, has a short (1.859(3) Å) B-P separation, supporting the B=P formulation. $^{11}\text{B}-^{31}\text{P}$ coupling is apparently not observed. Zwitterionic dilakylboryl-substituted triphenylphosphonium ylides of the type RC(PPh₃)=BR'₂ (R = Me, Et, Ph; R' = c-C₅H₁₁, c-C₆H₁₁) have $\delta^{11}\text{B}$ in the 51–58 ppm range.

Novel routes to B_2N and BN_2 ring systems have been developed. Reaction of $(TMP)B \equiv N-t$ -Bu and $(TMP)BCl_2$ yields $[(TMP)BCl_2]_2N$ -

TABLE 4

11B chemical shifts for adducts of iminoboranes R(X)B—N(H)R'.

X	δ^{11} B, R = R' = i-Pr	$\delta^{11}B, R = Bu, R = t-Bu$		
Cl	42.3	40.4		
t-BuO	31.4	31.6		
t-BuNH	32.9	31.8		
Et ₂ N	32.8	31.9		
i-Pr ₂ N	32.8	31.8		
(Me ₃ Si) ₂ N	40.8	43.3		

t-Bu, $\delta^{11}B=31.2$, which cyclizes on treatment with Na–K to yield 1,2-(TMP)₂-3-t-Bu-1,2,3-B₂N. This compound posesses a two π -electron system and has $\delta^{11}B=39.9$. Reaction of (TMP)BCl₂ with Li[(i-PrN(H)—N-i-Pr] affords (TMP)B(Cl)—N(i-Pr)-i-Pr, $\delta^{11}B=33.3$, which can be cyclized to 1-(TMP)-2,3-(i-Pr)₂-1,2,3-BN₂, $\delta^{11}B=26.5$.

The small-ring compound 1-t-Bu-2,2- $(Me_3Si)_2$ -2-t-Bu-borandiylborirane, which contains an exocyclic B=C double bond, has been prepared [8].

$$\begin{array}{c} CMe_3 \\ B\\ CMe_3Si\\ Me_3Si\\ Me_3Si\\ Me_3Si\\ B\\ CEPh_3\\ Me_3Si\\ B\\ CEPPh_3\\ Me_3Si\\ Me$$

It has $\delta^{11}B = 52$ (\underline{B}_2C) and 18 (\underline{B} =C) at -30 °C, but a methylenecyclopropane topomerization interconverts the two types of boron at higher temperatures. ⁴⁶ It undergoes cycloaddition with 2-butyne to form the corresponding 1,2-dihydroborete. In this, the ¹¹B chemical shifts for boron in the $\underline{B}C_2$ and $\underline{B}C_3$ rings are 83 and 34.5 ppm respectively. Because boron in the four-membered ring is so strongly deshielded, there may be a significant transannular B-C interaction. ⁴⁷ The borandiylborirane also exhibits

carbene character and is converted to an allene analogue, $\delta^{11}B = 78$, on treatment with $(Me_3Si)_2C_2$. This is also reflected in reactions with Ph_3El , which lead to ylides $(El = P, \delta^{11}B = 63; El = As, \delta^{11}B = 59)$. The protonated ylides give rise to such broad (halfwidth $1600\,Hz$) ^{11}B signals that chemical shifts are not measured. 48

1-Borirines are related to cyclopropenes by replacement of the CH₂ moiety by RB and are isoelectronic with cyclopropenium ions. In 1-t-Bu-2-B(t-Bu)Cl-3-Me₃Si-1,2,3-BC₂, boron in the BC₂ ring has δ^{11} B = 43 and that in the exocyclic B(t-Bu)Cl group has δ^{11} B = 72. Shifts in the 1:1 pyridine adduct are 47 and 9 ppm, indicating that this potentially bifunctional donor complexes with the B(t-Bu)Cl portion of the molecule.⁴⁹ Desulphurization and ring contraction of 3-(Me₃Si)₂N-4,5-R₂-1,2,3-S₂BC₂ (R = alkyl; δ^{11} B = 50-55) yields 1-(Me₃Si)₂N-substituted borirines. For R = H or a variety of alkyl substituents, δ^{11} B = 27 ± 0.5.⁵⁰

The first 1,3-dihydro-1,3-diborete has been characterized. Cis-1,2- $(BCl_2)_2$ -1,2- $(t-Bu)_2C_2H_2$, $\delta^{11}B=56.8$, may be converted to cis-1,2- $(Me_2NBCl)_2$ -1,2- $(t-Bu)_2C_2H_2$, $\delta^{11}B=34.8$. Ring closure with potassium affords the diborete 1,3- $(Me_2N)_2$ -2,4- $(t-Bu)_2$ -1,3- B_2C_2 , which has the predicted puckered ring structure [9]:⁵¹

Its ¹¹B chemical shift, 33.0 ppm, suggests partial π character in the B—N and B—C bonds, cf. 41.2 ppm for 1,3-(t-Bu)₂-2,3-Me₂—1,3-B₂C₂. These compounds may be reduced to form stable anion radicals, and the value of a_{11} B in c-(t-BuB)₂(CMe) $\frac{1}{2}$ is 0.95 mT. Spin density is considered to reside largely on the carbon; the large ¹¹B hyperfine coupling is thought to arise from spin polarization. ^{52–54}

The 1,3-dioxa-2,4-diboretanes [(mes)BO]₂ and (2,4-t-Bu₂BO)₂ have $\delta^{11}B = 32.4$ and 33.0 respectively. Deshielding of boron in these compounds is consistent with a strained ring structure, cf. 1-(mes)-3,3,6,6-Me₄-1-bora-3,6-disila-2,7-dioxaycloheptane, $\delta^{11}B = 30.5$. In the related cyclo-B₄ compound t-Bu₄B₄, the ¹¹B chemical shift is 135.7 ppm; $a^{11}B$ in the anion radical is rather small, 0.12 mT. ⁵⁶ Dehydrohalogenation of (TMP)B(Cl)—PH—CEt₃ produces a cyclic dimer [(TMP)B—PCEt₃]₂, $\delta^{11}B = 66.1$ (halfwidth 320), which features a four-membered B₂P₂ ring. Lack of observed B–P coupling may be associated with the long (1.925 Å av.) B–P bonds and the large ¹¹B linewidth. ⁵⁷ The tetraborinane 1,2,4,5-(Me₂N)₄-

 $1,2,4,5-B_4C_2H_4$ has $\delta^{11}B = 53.7$, which is typical of diborane(4) derivatives. ⁵⁸

D. Pyrazaboles

Pyrazaboles are heterocycles containing a B_2N_4 ring; boron occupies the 1,4 positions and each pair of vicinal nitrogen atoms is contributed by a pyrazole (PZ) ring. The numbering scheme adopted for these compounds is shown in [10]. Considerable effort has been invested in developing new pyrazabole chemistry.

¹¹B NMR data have been reported for 1,5- and 3,5-dimethylpyrazabole. The former has $\delta^{11}B = -10.5$ and the latter displays two resonances at -9.0 and -12.2 (J(BH) = 105). The low-frequency peak is assigned to the boron atom closer to the C—Me groups. A mixture of the two isomers reacts with 3-methylpyrazole to form the tetrakis(3-methylpyrazolyl)pyrazabole derivative, $\delta^{11}B = -0.6$, which yields a single spectroscopically detectable isomer, $\delta^{11}B = -7.4$, upon bromination. The salts K[(3-methylpyrazol-1-yl)₃BH] and K[(3-methylpyrazol-1-yl)₄B] have $\delta^{11}B = -1.3$ (d, 105) and 0.9 respectively. ⁵⁹

[10]

Cationic spiropyrazaboles of the type $R_2B(\mu-PZ)_2B(\mu-PZ)_2BR_2'^+$ have been reported. For R=R'=H, $\delta^{11}B=-7.7$ (2B) and -1.3 (1B). Thus the spiro boron appears at higher frequency. For R=H, R'=Et, shifts are -7.5 (2B), -1.5 (1B) and 5.2 (1B); and for R=-R'=Et, -1.8 (1B) and 5.1 (2B). In the more elaborate spiro compounds $R_2B(\mu-PZ)_2$ - $B(\mu-PZ)_2B(\mu-PZ)_2BR_2$, $\delta^{11}B$ is -7.5, -1.5 for R=H and -1.5, 6.5 for R=Et.

Pyrazaboles with RBO₂ bridging the two boron atoms, 61 μ -amido- μ -pyrazolatoboranes, 62 B-pyrazolyl-substituted pyrazaboles and pyrazabole complexes containing allylpalladium moieties 64 have been reported. ^{11}B NMR data for these materials and for other pyrazaboles 65,66 are collected in Table 5.

¹¹B NMR has been used to detect intermediates in the electrophilic halogenation of pyrazaboles with ¹⁰BBr₃. ⁶⁷ Boroxins, (RBO)₃, form 1:1

 ${\bf TABLE~5}$ ${\bf ^{11}B~NMR~data~for~pyrazaboles~and~related~compounds.}$

Compound	δ^{11} B
$EtB(\mu-PZ)_2(\mu-EtBO_2)BEt$	31.5 (1B, halfwidth 600),
,2,	1.8 (2B, halfwidth 140)
$PhB(\mu-PZ)_2(\mu-PhBO_2)BEt$	28.7 (1B, halfwidth 800),
, , , , , , , , , , , , , , , , , , , ,	1.5 (2B, halfwidth 290)
$[Et(\mu-PZ)_3BEt]PF_6$	0.2 (halfwidth 100)
[HB(μ -MePZ) ₃ BEt]PF ₆	-8.4 (d, 127), 0.2 (halfwidth 95)
[HB(μ -Me ₂ PZ) ₃ BH]CF ₃ SO ₃	-4.1 (d, 127)
$\text{Et}_2\text{B}(\mu\text{-PZ})_2\text{B}(\text{PZ})_2$	0.3(1B), 3.9(1B, br)
$(PZ)_2B(\mu-PZ)_2B(PZ)_2$	0.7
$R(PZ)B(\mu-NHR')(\mu-PZ)B(PZ)BR$	2.1-3.0 (halfwidth 135-250)
$Et(PZ)B(\mu-PZ)_2B(PZ)Et$	2.2 (halfwidth 190)
$4.8-(3.5-Me_2PZ)_2[HB(\mu-Me_2PZ)_2BH]$	-4.9(d, 105)
$(3,5-Me_2PZ)_4[B(\mu-Me_2PZ)_2B]$	-0.7 (halfwidth 50)
$(PZ)_2B(\mu-PZ)_2Pd(RC_3H_4)$	1.3
$([C_3H_5)Pd]_2(\mu-PZ)_2B(\mu-PZ)_2)PF_6$	0.5
$[Et2B(\mu-PZ)2B(\mu-PZ)2Pd(MeC3H4)]PF6$	0.4, 5.0 (br)
$([MeC_3H_4)Pd]_2(\mu-PZ)_2B(\mu-PZ)_2B(\mu-PZ)_2)PF_6$	-0.4
$H_2B(\mu-PZ)_2B(\mu-PZ)_2ZnCl_2$	-8.6 (br), -0.1 (CDCl ₃)
1125(4-12)25(4-12)2211012	$5.3, -3.2 \text{ (br) (CD}_3 \text{CN)}$
$(ZnCl_2)_2(\mu-PZ)_2B(\mu-PZ)_2B(\mu-PZ)_2$	-0.4
$Br(H)B(\mu-PZ)_2BH_2$	-6.5 (d), -7.5 (t)
	-0.8 (d, 143),
$Br(H)B(\mu-PZ)_2B(H)Br$	-1.7 (d, 143) (CD ₃ CN)
(mixture of cis and trans isomers)	0.3 (THF)
Br ₂ B(μ-PZ) ₂ B(H)Br	-6.6(d, 139),
B1 ₂ B(μ-F2.) ₂ B(F1)B1	-7.1 (s) (CH ₂ Cl ₂)
n. n/ nz/ nn.	-2.6 (THF)
$Br_2B(\mu-PZ)_2BBr_2$	0.5
$K[(PZ)_2BPh_2]$	
$Ph_2B(\mu-PZ)_2BH_2$	1.7(s), -8.4(d) 1.7
$Ph_2B(\mu-PZ)_2BPh_2$	1.7 $1.9(\underline{B}Ph), -6.6(\underline{B}Br)$
$Ph_2B(\mu-PZ)_2BBr_2$	$4.8(\underline{BEt}), -6.7(\underline{BBr})$
$\text{Et}_2\text{B}(\mu\text{-Me}_2\text{PZ})_2\text{BBr}_2$	4.6 (<u>B</u> Et), -0.7 (<u>B</u> B1) 4.4
$\operatorname{Et_2B}(\mu\text{-Me_2PZ})_2\operatorname{BEt_2}$	
$Br(H)B(\mu-Me_2PZ)_2B(H)Br$	-8.3, -10.3
$Br_2B(\mu-Me_2PZ)_2BBr_2$	-7.5 - 2.2
$(PZ)_2B(\mu-Me_2PZ)_2B(PZ)_2$	-0.2
$Ph_2B(\mu-PZ)_2BPh_2$	1.8 (halfwidth 300)
[(Me ₂ N)PhB] ₂ O	29.4 (halfwidth 300)
$[(PZ)PhB(\mu-PZ)_2BPh]_2O$	1.8 (halfwidth 600)
(PhBO) ₃ ·HPZ	29.6 (1B, halfwidth 140),
	20.9 (2B, halfwidth 400)
$(PhBO)_3 \cdot Me_2PZH$	20.5 (halfwidth 750)
(PhBO)₃·imidazole	19.5
$(EtBO)_3 \cdot Me_2PZH$	24.0 (halfwidth 670)

complexes with amines. These have only one four-coordinate boron atom in the solid state. ¹¹B NMR indicates that, in solution, dissociation occurs because one signal is observed at ambient temperature but two appear on cooling. Pyrazole behaves differently. The 1:1 complex of (PhBO)₃ with pyrazole shows signals at 29.4 ppm (1B) and 20.9 ppm (2B), implying that both nitrogens are coordinated to boron. Addition of two more equivalents of pyrazole gives rise to new peaks at 18.8 ppm (major) and 2.5 ppm (minor). The former is due to a 3:1 complex in which all three borons are thought to be coordinated. ⁶⁸

E. Boron-containing heterocycles

A novel B_4C_2 ring compound 1,2,4,5-(Me₂N)₄-1,2,4,5-B₄C₂H₄ is stabilized by Me₂N groups. It has $\delta^{11}B = 53.7$, which is typical of a diborane(4) derivative substituted by carbon and nitrogen. 69 11B NMR data for a series of 1-boraadamantane and 3-borabicyclo[3.3.1] nonane complexes have been published, cf. Table 6. In the latter compounds, ion pairing may strongly influence the chemical shift. 70,71 The reaction of CH₂(BI₂)₂ with alkynes R₂C₂ yields 4,5-diaklyl-1,3-diiodo-2,3-dihydro-1,3-boroles. from which iodide may be displaced by nucleophiles. 11B shift data for a very extensive series of such compounds are in the range 67-72 ppm. Substitution of EtO or Me₂N on boron leads to shielding increases (52.7, 44.2 ppm) but for MeS, $\delta^{11}B = 69.0.^{72}$ The heterocycle 2.5-(Me₃Sn)₂-1.2.5-Et₃-3,4-Me₂-3-borolene has $\delta^{11}B = 64.0$ (halfwidth 400 ± 20 Hz at 40 °C and $1200 \pm 100 \,\mathrm{Hz}$ at $-30\,^{\circ}\mathrm{C}$). Both Me₃Sn groups participate in intramolecular ring shifts.⁷³ 1,4,4-Trimethyl-1-boracyclohexa-2,5-diene has $\delta^{11}B = 58.3$. This changes to 56.5 ppm when the geminal Me groups are connected to form a cyclopropane ring. Absence of large chemical-shift differences has been interpreted as meaning that there is little conjugation between boron and the spiro cyclopropyl group, but ¹¹B shifts may not be a sufficiently sensitive probe. 74 1-Methyl-4,5-cyclopentenoborepin [11], a neutral analogue of the tropylium cation, has recently been reported.

It has $\delta^{11}B = 53.6$, which changes to 49.2 in the Cr(CO)₃ complex. Weak conjugation involving boron probably obtains in this compound for the ¹¹B shifts of 1-phenyl-1-boracycloheptadiene and its Cr(CO)₄ complex are at 54.6 and 29.7 ppm respectively.⁷⁵

TABLE 6

11B NMR chemical shifts of ate complexes of 1-boraadamantane and
7-substituted 3-methoxy-3-borabicyclo[3.3.1]nonanes.

Compound	Solvent	δ^{11} B
Me - B- Li ⁺	Et ₂ O/THF (1/1)	-20.3
OMe B- Li ⁺	MeOH/THF (2/3)	-3.1
Na ⁺	THF	-3.0
Me——BOMe Na+	THF	6.0
MeOCH ₂ ————————————————————————————————————	MeOH/THF (2/3)	14.3
Me-CoMe OMe Li ⁺	MeOH/THF (2/3)	15.5

Heterocycles [12]–[15] containing two centre B—B bonds may be prepared from B_2Cl_4 and suitable organic ligands. In these, the high-frequency ^{11}B resonance is due to the Cl_2B group, and in the $C_2B_2N_2$ heterocycle [12] a B–B coupling of 120 Hz is observed.

A transannular B—N bond in $[o\text{-}C_6H_4(CH_2N(H)Me)]_2B^+Cl^-$ is suggested by its ^{11}B chemical shift, 10.1 ppm. 77 Condensation of PhB(OH)₂, N-alkylhydroxylamines and H₂CO yields bis(phenylboronates) of N, N'-methylenebis(N-alkylhydroxylamines)s, which have $\delta^{11}B \approx 22$, indicating the presence of a transannular B—N bond. 78 11 B NMR data have been collected for adducts and condensation products of BCl₃ with N-, P- and As-oxo compounds. 79 Chemical-shift data have been reported for a series of esters formed from t-hexylboronic acid and $RN(C_2H_4OH)_2$: R = H, 14.0 ppm; R = Ph, 30.0 ppm. The chemical shift of the N—Me ester changes from 23.9 to 17.3 ppm on cooling from 40 to -40 °C, indicating that there is an equilibrium between two conformations, one having three coordinate boron and the other having four coordinate boron and a 1,8-transannular B-N bond. 80 Shift data have been published for a series of heterocycles derived from Ph₂BOH and N-hydroxyalkylsalicylaldimines, 4.4-7.0 ppm. 81 Chiral B-N heterocycles, azoborata-benz[e]indenes and -indans have been prepared. Their ¹¹B chemical shifts, 6.4, 7.0 and 6.7 ppm, are indicative of four-coordinate boron and thus a B—N dative bond. ⁸² The ¹¹B NMR spectrum of a B₂NO₂ heterocycle [16] shows two singlets at -12.8 and 32 ppm due to the three- and four-coordinate boron sites:83

Reaction of Me₂BBr with symmetrically substituted oxamides yields a rich variety of heterocycles [17]–[23]:

The ¹¹B shifts for compounds [17] are in the range 16.8–17.7 ppm except for R = i-Pr (15.4 ppm) and R = m-CF₃Ph (10.6 ppm). Resonances for \underline{BO}_2 and \underline{BN}_2 in the heterocycles [18] fall in the ranges 22.7–25.7 and 6–10.6 ppm respectively. Compounds of the type [19] exist in solution as an equilibrium mixture of two conformers having $\delta^{11}B = 54.1$ –54.7 and 12.2–18.5. The same obtains for compounds of type [22], but these exhibit separate ¹¹B signals, at 54 and 10.3–16.8 ppm. Chemical shifts for heterocycles of types [21] and [23] are 54.6 ± 0.2 and 19.7–22.4 ppm respectively. ⁸⁴ ¹¹B NMR has been used to analyse products of the reaction of diborane with 8-hydroxyquinoline and N-methyldihydrophenidine. ⁸⁵ The heterocycle 4,5-Et₂-2,3,3-Me₃-1-(o-CF₃Ph)-2,5-dihydro-1H-1,2,5-azastannaborole [24], $\delta^{11}B = 45.3$ (47.8 in the Si analogue), exhibits atropomerism due to hindered rotation about the N—CF₃Ph bond: ⁸⁶

Chemical-shift data for a large series of 1,2,4,6-tetrasubstituted 1-phospha-4-boracyclohexa-2,5-dienes have been published. Many of these have Ph, Me or Et groups on phosphorus, Et₂N or MeO on boron and Me or H substituents in the 2,6 positions and have $\delta^{11}B = 30.1-37.9$. Conversion to the P=O, P=S or P=Se derivatives has hardly any effect on boron shielding, nor does replacement of P by As.⁸⁷

Autooxidation of 4,5-Et₂-1,2,2,3-Me₄-2,5-dihydro-1*H*-1,2,5-aza-silaborole, $\delta^{11}B = 44.8$, produces the unusually stable *B*-peroxyethyl derivative [25], $\delta^{11}B = 30.0$:

$$H_5C_2-O-O-B$$
 N_5C_2
 CH_3
 H_5C_2
 CH_3
[25]

This can transfer one oxygen atom to Et₃B, forming the *B*-ethoxy heterocycle, $\delta^{11}B = 60.1$. ⁸⁸ The interesting cycloboratrisiloxane Me₂Si-[OSi(t-Bu)₂O]₂BF has $\delta^{11}B = 12.3$, ⁸⁹ and the chemical shift for B(OCH₂-1,2-c-C₃H₄—CH₂O)₃B is 47 ppm. ⁹⁰ Octahydroxycyclobutane reacts with the activated borane Me₃CCO₂BEt₂ to give the thermochromic heterocycle [26]:

$$\begin{matrix} R & O & O \\ P & O & O \\ O & O & B \\ O & O & B \end{matrix}$$

This compound has $\delta^{11}B = 7.6$ in DMSO, but it may coordinate solvent. Structures of the high- and low-temperature forms have been determined. 91,92 Novel heterocycles of the type (RB)₄O₈C₄ [27] are obtained from c-C₄(OH)₈ and R₃B:

The RB groups form five-membered rings by bridging alternate edges of the oxocarbon. For R = alkyl, $\delta^{11}B = 37.1\text{-}38.3$, 30.0 for R = Ph, and 29.1 for the bis(pyridine) complex of the B—Et compound. ⁹³ 1,3,2-Dioxaborolane, formed from B₂Cl₄ and Me₂C(OH)—C(OH)Me₂Me₂, has $\delta^{11}B = 30.4$ (halfwidth 445). ⁹⁴ A series of spiroborates, derived from catechol borane and ephidrine-type aminoalcohols, has been reported. The ¹¹B chemical shifts, 12 ± 0.2 ppm, are significantly lower than C₆H₄O₂BOR compounds owing to the intramolecular B—N dative bond. ⁹⁵ A dipolar HB₂O₂C heterocycle [28] $\delta^{11}B = 18.8$, is formed from borabicyclononane and pivalic acid: ⁹⁶

$$\begin{array}{ccc}
O - B \\
t - Bu - C & - \\
O - B \\
\hline
\end{array}$$
[28]

Monocyclic acyloxyfluoroboranes, 2,2,6,6- F_4 -1,4- R_2 -1,3,5-trioxa-2,6-diboracyclohexenes [29], are formed from (RCO)₂ and (F_2 BOMe)₃. They exhibit ¹¹B singlets at 0.7 ± 0.1 ppm and J(F-B) is not observed. Two conformational isomers occur in the solid state and may also exist in solution, giving rise to averaged chemical shifts. Bicyclic acyloxyfluoroboranes [30], 1,5- F_2 -3,7- R_2 -2,4,6,8,9-pentaoxa-1,5-diborabicyclo[3.3.1]-nonadienes, are synthesized from the monocyclic compounds and additional (RCO)₂O. ¹¹B shifts are 2.0 ± 0.4 ppm and again J(F-B) is not observed. ⁹⁷

Chemical-shift data for an extensive series of amine complexes with $(EtBO)_3$ and $(PhBO)_3$ have been published. The increase in ¹¹B shielding roughly parallels the amine pK_a values. Observation of only one ¹¹B resonance suggests that dissociation of the complexes occurs in solution. The solid-state structures of $2(PhBO)_3 \cdot 3[1,4-C_6H_4(NH_2)_2]$ and $2(PhBO)_3 \cdot (diazabicyclooctane)$ reveal that only one boron atom in each boroxin ring is bonded to nitrogen.⁹⁸

Reactions of 1,2,4-trithia-3,5-diborolanes with alkynes unexpectedly produces 1,2,3-dithiaboroles in which the sulphur atoms are found by

B-arylamino derivatives are as follows: $3\text{-Et}_2\text{N-4},5\text{-Ph}_2\text{-1},2,3\text{-BS}_2\text{C}_2$, $43.8\,\text{ppm}$; $3\text{-}(2,6\text{-Me}_2\text{PhNH})\text{-}4,5\text{-Et}_2\text{-}1,2,3\text{-BS}_2\text{C}_2$, $44.7\,\text{ppm}$. Structure-chemical-shift correlations can be made in these and related heterocycles: for the RBS₂, RBSN and RBSC moieties, ¹¹B shift ranges are 59–72, 39–55 and 66–80 ppm respectively. ⁹⁹ $3\text{-}(2,6\text{-Me}_2\text{PhNH})\text{-}4,5\text{-Et}_2\text{-}1,2,3\text{-BSe}_2\text{C}_2$ has $\delta^{11}\text{B} = 44.7$; the change on replacing S by Se is remarkably small. ¹⁰⁰ The BCS cluster compound Na[CH₂(BH₂)₅S₄] has been prepared from NaB₃H₈ and CS₂. Its ¹¹B NMR spectrum discloses two 116 Hz triplets at -13.7 (4B) and -15.8 (1B) ppm, in agreement with its crystallographically determined adamantane-like structure [31]: ¹⁰¹

Both 1:1 and 2:1 condensation products have been prepared from 2-iso-propoxy-1,3,2-benzodioxaborole and salicylaldehyde-2-mercaptoanil. These have ¹¹B resonances at 6.1 and at 8.8, 23.1 ppm respectively. The deshielded peak is assigned to tricoordinate boron. ¹⁰² 1,4-Dithia-2,6-diaza-3,5-diborinanes [32] are formed from 1,2,4-trithia-3,5-diborolanes and 1,3-disubstituted sulphur diimides:

$$\begin{array}{c|c}
R^{2} & S & R^{3} \\
 & | & | & | \\
 & | & | & | \\
 & R^{1} & S & R^{1}
\end{array}$$
[32]

¹¹B chemical shifts are typically 50–55 ppm (52.6 ppm for $R^1 = Me$, $R^2 = R^3 = Me_3Si$). Lower values occur for analogues in which $R^1 = Et_2N$ (34.9 ppm) and $(Me_3Si)_2N$ (44.9 ppm).

F. Alkylboranes and related compounds

A large series of amino- and alkenylboranes has been prepared in a search for long-range couplings between ¹¹B and ¹³C, ²⁹Si or ¹¹⁹Sn, cf. Table 7. ¹⁰⁴ Boron-carbon couplings in Li[(PhC=C)₄B] have been extracted from ¹³C[¹H, ¹¹B] NMR experiments: ¹J(C-B) = 70.0 Hz and 2J(C-B) = 14.0 Hz,

TABLE 7

Compound					δ^{11} B
R_1^1 R^2	R ¹	R ²			
Br ₂ B Br	Н	C ₄ H ₉		(a)	52.7
D12D D1	C_2H_5	C ₂ H ₅		(b)	55.7
	C ₃ H ₇	C₃H ₇		(c)	55.8
	C ₄ H ₉	C ₄ H ₉		(d)	55.6
R¹ Br	R ¹	R ²			
Br_2B R^2	Н	_ C₄H ₉		(a)	50.1
-	C_2H_5	C_2H_5		(b)	58.0
	C_3H_7	C_3H_7		(c)	57.8
	C ₄ H ₉	C₄H ₉		(d)	58.1
R ¹ CH ₃	X	R¹	R ²		
R^2 X	CH₃O	CH ₃	CH ₃	(a)	31.8
	CH₃S	CH ₃	CH ₃	(b)	43.6
	Br	C_2H_5	C_2H_5	(c)	37.8
CH ₃	X		_		
_Ń B−X	CH ₃	(a))		32.4
CH ₃	(CH₃)₃Si CH₃	(b)			32.9
CH ₃	N.	(c))		25.5
	CH₃Se	(d)	`		31.7
	Cl	(e)			27.0
R^1 R^2	$R^1 = R^2$				
$B(H)_3$	C ₂ H ₅				68.6
	(CH ₃)₃Si				70.0
R^1 R^2	R ¹	R ²	: 		
C ₈ H ₁₄ B H	C₂H₅ H		₂ H ₅ EH ₃) ₃ Si		

TABLE 8 δ^{11} data (ppm) of diborane(6) compounds, organylborane adducts and triorganylboranes.

Compound		Me(a)	Et(b)	Pr ⁿ (c)	Pr ⁱ (d)	Bu ⁿ (e)	Bu ⁱ (f)	Bu ^q (b)	Bu ^t (h)	C ₆ H ₁₁ (i)	Thex(j)	Ph(k)
R H H	(1) (2)	38.8 4.4	41.4 3.6	40.3 4.5	44.2 3.2	40.6 3.7	39.3 5.2	43.6 3.5	44.1 4.8	42.4 3.8	<u>-</u>	-
R H H H H R	(1,2)	21.9	23.0	23.0	23.9	22.8	23.0	23.9	24.3	23.0	24.3	_
R H H	(1) (2)	31.7 15.5	34.5 16.9	33.6 17.2	37.2 17.8	33.7 16.8	33.0 17.9	37.0 18.0	=	35.0 17.0	<u> </u>	_
R H R	(12)	25.0	28.4	28.5	30.2	28.0	28.2	30.8	_	30.6	_	<u>-</u>
R ₂ BH—THF R ₂ BH—DMS RBH ₂ —THF RBH ₂ —DMS R ₃ B			3.6 -6.6 86.5	2.0 - -8.0 86.6	 4.0 -3.6 86.0	 1.7 9.7 -7.7 86.5	1.0 9.9 -8.8 87.5	 11.0 -4.6 86.0	29.5 — 12.0 —1.0 83.0	19.4 7.7 9.7 -4.6 87.0		12.3 1.4 8.4 -8.1 68.0

cf. 46.7 Hz in Me₃B.¹⁰⁵ ¹¹B chemical-shift data have been published for a huge variety of organosubstituted B₂H₆ derivatives obtained from exchange reactions between R₃B and BH₃·THF or BH₃·Me₂S, cf. Table 8.¹⁰⁶ The chiral borane *B*-allyldiisopinocamphenylborane has δ^{11} B = 78.¹⁰⁷

A series of 1,1-diborylalkenes has been described. Compounds of the type $R(Me_3Si)C = C[B(t-Bu)Cl]_2$ and $R(Me_3Si)C = C[B(NMe_2)Cl]_2$ exhibit $\delta^{11}B$ values of 74 ± 1 and 35 respectively. The shift range for 1,2-diborylalkenes [t-BuB(Cl)]CR\(^1 = CR^2[B(Cl)t-Bu]\) is larger: 68 and 58 ppm for $R^1 = R^2 = H$ and Me respectively; and 71 ppm for $R^1 = SiMe_3$, $R^2 = H$. Tin-containing alkenylboranes $R_3Sn(R')C = C(R'')BR_2'''$ and allenylboranes $R_3Sn(R')C = C(R'')BR_2'''$ have $R_3C(R')BR_2'''$ and allenylboranes $R_3C(R')BR_2'''$ have $R_3C(R')BR_3''$ ha

The 5 ppm shift difference between the 1,3,2-B₂OC₂ and 1,3,2-B₂OC₃ rings may be attributable to ring-strain effects. Curiously, Cl(Me)-BC₂H₄B(Me)OMe shows only one ¹¹B resonance, but the chemical shift is temperature-dependent so this compound may have a Cl or OMe bridge; or these two groups may be interchanging. ¹¹³ Chemical shifts for

 $TABLE \ 9$ ^{11}B NMR data for bis(chloroboryl)alkanes and derivatives.

Compound	δ^{11} B
1,2-(Cl ₂ B) ₂ C ₂ H ₄	63
$1,2-[Cl(Me)B]_2C_2H_4$	75
Cl(Me)BC ₂ H ₄ B(Me)OMe	41
$1,3-(Cl_2B)_2C_3H_6$	60.7
$1,3-(Me_2B)_2C_3H_6$	84.5
$1,3-[Me(OMe)B]_2C_3H_6$	50.9
$(Et_2B)_2NMe$	59.7
[Me(Br)B] ₂ NMe	52.0
$(Me_2B)_2O$	52.0
$1,2,3-Me_3-1,3,2-B_2NC_2H_4$	62
1,3-Cl ₂ -2-Me-1,3,2-B ₂ NC ₂ H ₄	54
$1,2,3-Me_3-1,3,2-B_2NC_3H_6$	63.2
1,3-Cl ₂ -2-Me-1,3,2-B ₂ NC ₃ H ₆	55
$1,3-Me_2-1,3,2-B_2OC_3H_6$	56.6
1,3-Me ₂ -1,3,2-B ₂ OC ₂ H ₄	61.6

(i-PrO)₂BR range from 27.7 to 30.7 ppm, except for R = CHCl₂ for which $\delta^{11}B = 23.5$. Trimethylamine complexes of CF₂XBF₂ have $\delta^{11}B = -0.6$, -0.4 and -0.2 for X = F, Cl and Br respectively; ${}^{1}J(F-B)$ and ${}^{2}J(F-B)$ are 52-48 and 24-33 Hz respectively. 115 The 11B shifts for the thioalkylboranes Li[MeSCH₂BH₃], MeSCH₂BH₂·Me₃N and [Me₂SCH₂BH₂·Me₃N]I are -30.5, -3.9 and -7.2 ppm. The dimer (MeSCH₂BH₂)₂ exhibits two signals at -13.6 and -17.2 ppm, probably due to compounds with different ring conformations. In the solid state the ring adopts a chair conformation with equatorial methyl groups. 116 11B NMR chemical shifts of a series of 25 η^{1} -pentamethylcyclopentadienyl-substituted boron compounds have been published, e.g. crystallographically characterized (Me₅Cp)₂BF, $\delta^{11}B = 53.0$ (J(F-B) = 106). Many of these compounds are fluxional and undergo 1,2 boron shifts. ³³⁶ Gas-phase pyrolysis of the borabicyclo[3.3.1]nonane dimer yields 1-borabicyclo[4.3.0]nonane, $\delta^{11}B = 90.5$, and 8-borabicyclo[4.3.0]nonane, $\delta^{11}B = 27.0$. Further heating of the latter, solid. provides 1,2:1,2-bis(biphenyl-2,2'-diyl)diborane(6). $\delta^{11}B = 27.0^{337}$

G. Other one-boron compounds

Data have been presented for an extensive series of amine complexes of mixed boron halides. The ¹¹B and (¹⁹F) chemical shifts (Table 10) depend primarily on the number and type of heavy halogen(s) present, the amine substituents having a relatively small effect. The ¹⁹F₋¹¹B couplings appear to increase with increasing steric size of the amine. Linewidths are too large to permit resolution of signals for diastereomeric PhCH₂(Et) (Me)N·BFClBr. ¹¹⁷

Similarly, substituent groups have very little effect on the ¹¹B chemical shifts of $3\text{-RC}_5H_4N\text{-B}X_3$ complexes (R = F, Cl, Br, CN), which have $\delta^{11}B = 17.8 \pm 0.1$ for X = F and 25.9 ± 0.1 for X = Br. ¹¹⁸ Complexes of mixed boron halides with Me₃ ¹⁵N have been studied, cf. Table 11, and values of J(N-B) and J(F-B) correlated. ¹¹⁹

NMR data for a series of aminoboron halides have been reported. For (TMP)BRF (R = alkyl), δ^{11} B ranges from 35.1 to 36.7 and J(F-B) from 81 to 89 Hz. For (TMP)B(X)C(Y)Ph₂ δ^{11} B = 33.6, 41.8 and 41.8 for Y = H and X = F, Cl, Br respectively, and 36.3 ppm for X = F, Y = SiMe₃. 120

Cyclenphosphorane forms a bis(borane) adduct, $\delta^{11}B = -15.7$ (q, 100), in which phosphorus retains its five-coordination. A series of phosphorylaminoboranes $X_2P(O)$ —NR'— BR_2 has been prepared, cf. Table 12. The borotropic isomers $X_2P(NR')$ — OBR_2 have been detected by NMR and evidently arise from intramolecular rearrangements in dimers. 122

TABLE 10

11B chemical shifts for some mixed boron halides and their amine complexes.

				Donor			
Acceptor		Quinuclidine	NEtPr ⁱ ₂	NMe ₂ Ph	NMeEtPh	PhCH ₂ NMeEt	
BF ₃	10.0	-0.5	0.2	-0.1	0.1	-0.1	
BF ₂ Cl	19.8	4.1	4.9	4.3	4.3	4.6	
BFCl ₂	32.3	7.7	8.8	8.0	8.0	8.3	
BCl ₃	46.5	9.2		10.0	10.1	9.8	
BF ₂ Br	19.5	3.6	3.3	3.6	3.9	3.8	
BFBr ₂	29.0	3.1		3.0	3.3	3.2	
BBr ₃	38.7	-3.9		-3.5	-3.4	-3.7	
BF ₂ I					2.3	1.3	
BFI ₂				-17.3	-16.9	-16.0	
BI ₃	-7.9	-53.1		-54.0	-54.0	-53.3	
BCl₂Br	44.7	5.8		6.4	6.7	6.3	
BClBr ₂	42.3	1.4		1.8	2.3	1.8	

	TABLE 11	
NMR data	for boron-halide complexes of Me ₃ ¹⁵ N	ı.

Boron halide	J(F-B)	J(N-B)	δ^{11} B
BF ₃	15.3	-18.7	0.6
BF ₂ Cl		-18.6	5.2
BF ₂ Br	54.2	-18.5	4.4
BFCl ₂	60.1	-17.5	8.2
BFBr ₂	91.9	-17.4	3.7
BCl ₃		-16.5	10.2
BFI ₂		-14.3	-19.0
BCl ₂ Br		-16.1	6.7
BCl ₂ I		-15.4	-3.2
BClBr ₂		-15.7	2.2
BClBrI		-14.7	-9.8
BBr ₃		-15.2	-3.3
BClI ₂		-13.4	-24.8
BBr ₂ I		-14.3	-17.0
BBrI ₂		-13.2	-33.9
BI ₃		-12.1	-54.2

 ${\bf TABLE~12}$ $\delta^{\rm 11}{\bf B}$ NMR data for phosphorylaminoboranes.

Compound	δ^{11} B		
Me ₂ P(O)—NMe—BMe ₂	10.5		
$(Me_2N)_2P(O)$ —NMe—BMe ₂	51.5, 44.3, 0		
$(Me_2N)_2P(O)-NMe-B(NMe_2)_2$	27.3		
Me ₂ N(Cl)P(O)—NMe—B(Cl)NMe ₂	7.0, 28.5		
Cl ₂ P(O)—NMeOBMe ₂	54.8		
[Cl ₂ P(O)—NMe—BCl ₂] ₂	6.0		
$[Cl_2P(O)-NMe-BBr_2]_2$	6.8		

 $^{^{11}}B$ NMR spectroscopy has been used to study monomer–dimer equilibria in $Ph_2P(O)OBEt_2$ and related compounds. 123

Use of very bulky silicon-containing substituents has led to structurally novel boron compounds, e.g. the alkylborohydride (THF)₃-Li(μ -H)₃-BC(SiMe₃)₃, δ^{11} B = -30.2 (J(B-H) = 80). The compound [(Me₂PhSi)₃C]BF(OH) is a rare example of a crystallographically characterized organofluorohydroxyborane. It has δ^{11} B = 29.3, but the ¹¹B (and ¹⁹F) signal in CDCl₃ is too broad to observe B-F coupling. Other

materials obtained with bulky silicon substituents include (Me₃Si)₃- $CB(1,2-C_6H_4O_2), \quad \delta^{11}B = 34; \quad (Me_3Si)_3CB(OH)OC_4H_8C(SiMe_3), \quad 29.6; \\ (Me_3Si)_3CB(OMe), \quad 31.0;^{126} \quad (Me_3Si)_3CB(F)OC_4H_8C(SiMe_3)_3, \quad 30.0; \\ (Me_3Si)_3CB(Ph)OC_4H_8C(SiMe_3)_3, \quad -10 \quad (halfwidth \quad 3900 \, Hz);^{127} \quad and \quad (halfwidth \quad 3900 \, Hz);^{127} \quad and \quad (halfwidth \quad 3900 \, Hz);^{128}$ (Me₃Si)₃CBPh₂, 77.5. The very bulky 2,4,6-(t-Bu)₃PhNH group has also been found to be useful in the synthesis of interesting boranes such as $(t-Bu)_3PhNHBCl_2$, $\delta^{11}B = 32.8$, and $(t-Bu)_3PhNHB(NH_2)_2$, 24.6, and $(t-Bu)_3$ PhNHBF₂, 16.8. In the latter compound ${}^2J(F-F)$ and ${}^3J(F-H)$ be measured because there is a high barrier to rotation about the B-N bond. The compounds $R(Et)B-C(Et)=C(Me)SnMe_3$ (R = N-indolyl, $\delta^{11}B = 53.5$; R = N-pyrazolyl, 53.2) exhibit chirality owing to restricted rotation about the B-N bond. 130 The "hydridge sponge" 1,8-bis(dimethylboryl)naphthalene, $\delta^{11}B = 79$, is a strong hydride acceptor analogous to the "proton sponge", 1,8-(Me₂N)₂C₁₀H₆. It reacts with KH to form K[H-1,8-(Me₂B)₂C₁₀H₆] in which the hydride unsymmetrically bridges the two boron atoms (d(BH) = 1.20(5), 1.49(5) Å), but in etheral solutions, a single ¹¹B resonance at 4 ppm is observed, indicative of a symmetrical or rapidly tautomerizing structure. 131

The ¹¹B chemical shifts of Ph₄B⁻ salts are nearly independent of solvent and concentration; this is probably because of the effective shielding of boron by the four phenyl groups. ¹³² The PPN⁺ (PPN is $(Ph_3P)_2N^+$) salts of BH₃Cl⁻, $\delta^{11}B = -14.6$ (J(B-H) = 104) and BH₂Cl⁻₂, 3.4 (131), have been characterized. Disproportionation of the former into BH₂Cl⁻₂, B₂H⁻₇ and Cl⁻ has been followed by ¹¹B NMR spectroscopy. ¹³³

Reaction of BCl₃ with CF₃SO₃H yields (CF₃SO₃)₃B, δ^{11} B = -1.1, which is converted by additional CF₃SO₃H to the superacid [(CF₃SO₃)₄B]-CF₃SO₃H₂, δ^{11} B = -3.6 (halfwidth 198). An intermediate, (CF₃SO₃)₂BCl, has δ^{11} B = -3.3 (halfwidth 470).¹³⁴ The methoxytetrafluorotellurate esters (*cis*-MeOTeF₄O)₃B and (*trans*-MeOTeF₄O)₃B have recently been reported. In CFCl₃ they have δ^{11} B = -2.2 and -4.8 respectively. These values change to -21.3 and -22.2 in CH₃CN as solvent, indicating the formation of adducts.¹³⁵

Complex formation between aqueous NaB(OH)₄ and polyhydroxy compounds such as propane-1,2- and -1,3-diol, glycerol, mannitol and sorbitol have been examined by 11B NMR. The mixture obtained with, for example, ethylene glycol contains free B(OH) $_{4}^{-}$, $\delta^{11}B = -17.3$, (C₂H₄O₂)- $B(OH)_2^-$, -13.4, and $(C_2H_4O_2)_2B^-$, -9.7 (br, probably owing to relaxation effects). 136 Variable temperature 11NMR data, obtained at 127 and have been reported for aqueous $KB_5O_8 \cdot 4H_2O_1$ K₂B₅O₈(OH)·2H₂O and K₂B₄O₇·4H₂O, and these shed much light on polyborate equilibria in water. Species recognized by this technique are $B(OH)_3/B(OH)_4^-$, $\delta^{11}B = 18$, $B_3O_3(OH)_4^-$, 13, and $B_5O_6(OH)_4^-$, 1.¹³⁷ Organoboron monosaccharides also have $\delta^{11}B = -0.1 \pm 0.1$. ¹³⁸

V. POLYBORANES AND CARBORANES

Qualitative methods have been cited for estimating trends in ^{11}B chemical shifts in *closo*-boranes and -carboranes as well as heteroatom boranes. In a $B_nH_n^{2-}$ ion the lower the coordination number of boron, the smaller the shielding. Shifts in heteroatom boranes, i.e. ones in which some other element such as C or S replaces boron (or BH) can be estimated relative to $B_nH_n^{2-}$ by taking into account several factors:

- (1) antipodal effects (AE) of a heteroatom on a diametrically opposite or antipodal ¹¹B nucleus;
- (2) rhomboidal effects (RE) produced by an atom on one at the opposite vertex of a rhombus in the cluster;
- (3) butterfly effects (BE) caused by one atom on another two bonds away; each of these occupies an unshared vertex of two edge-shared triangular faces;
- (4) neighbour effects (NE).

In general, if the heteroatom is four-coordinate then AE > BE, but if it is five-coordinate then AE > RE > BE > NE. An example of what can be achieved using these guidelines is shown in Fig. 3, which displays trends in the ^{11}B chemical shifts of $B_{10}H_{10}^{2-}$, $B_2CH_{10}^{-}$ and $1,2-B_8C_2H_{10}^{-138}$

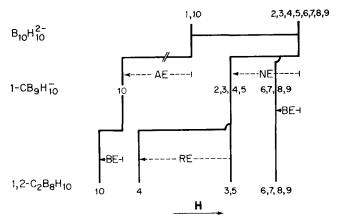


FIG. 3. Schematic representation of the ^{11}B NME spectra of $B_{10}H_{10}^2$, 1-CB₂ H_{10}^- , and 1,2-C₂ B_8H_{10} .

A. B_{2,3} boranes and carboranes

The diborane(4) derivative $B_2H_4(Me_3N)_2$, $\delta^{11}B = -3.5$, has recently been prepared. It reacts with B_2H_6 to form $B_3H_6(Me_3N)_2^+$, $\delta^{11}B = -9.7$ ($\underline{B}H_2$) and -15.8 (\underline{B} —N), which is degraded by additional base to provide

BH₂(Me₃N)—BH(Me₃N)⁺. The ¹¹B spectrum of this cation displays two very broad signals at 12.5 and -3.9 ppm. ¹³⁹ ¹¹B chemical-shift data for B₂X₄ have been compared; for X = F, Cl, Br and I, $\delta^{11}B = 23$, 62, 67 and 67.5 respectively. ¹⁴⁰ A diborane derivative, Me₂P(CH₂BH₂)₂H, $\delta^{11}B = -13.1$ (t, 109), in which a Me₂P(CH₂)₂ unit replaces a bridging hydrogen, has been prepared. A similar triborane compound [33], Me₂N(CH₂BH₂)₂BH₂, shows ¹¹B signals at 2.6 (1B) and -27.5 (2B) ppm. The most shielded resonance is a poorly resolved heptet having $J(B-H)\approx 30$ Hz. ¹⁴¹

 11 B (and 13 C) NMR data have been reported for a series of peralkylated 1,6-B₂C₄H₆ derivatives. The B₂C₄R₆ carboranes (R = Me, Et, i-Pr) are thought to have a pentagonal pyramidal geometry with one apical and one basal boron atom. The chemical shift of the apical boron ranges from -44.2 to -46.2 ppm and that of the basal boron from 17.8 to 19.3 ppm. The T_1 values for the apical basal boron nuclei in 1,2,3,4,5-Me₅-6-EtB₂C₄ are 16.2 and 4 ms respectively; and 7.5 and 1.9 ms in Et₆B₂C₄. The $T_1(^{10}$ B)/ $T_1(^{11}$ B) ratios agree well with the theoretical value of 1.53. 142,143 Two-dimensional 11 B- 11 B correlated spectra have been obtained for

Two-dimensional $^{11}B^{-11}B$ correlated spectra have been obtained for a series of triborane derivatives of the types $B_3H_7X^-$ and $B_3H_6ClX^-$, cf. Tables 13 and 14 and Fig. 4, which displays their topological representations. In the $B_3H_7^-$ series two COSY correlations between the substituted (B(1)) and unsubstituted (B(2,3)) boron nuclei occur. However, in $B_3H_6ClX^-$ only correlations between substituted boron atoms are found.

TABLE 13

Chemical shifts, COSY correlations and structural types of disubstituted triborane anions $[B_3H_6(Cl)(X)]^-$.

Disubstituted anion	δ(1) (B—Cl)	δ(2) (B—X)	δ(3) (B—H)	COSY correlation	Structure type
$[B_3H_6(Cl)_2]^-$	-11.9	-11.9	-4.3	(1, 2)-3	с
$[B_3H_6(Cl)(NCS)]^-$	-8.3	-25.1	-4.2	1-2	c
[B ₃ H ₆ (Cl)(NC)BH ₂ Cl]	0.6	-30.9	-4.1	1–2	
$[B_3H_6(Cl)(NC)B_3H_7]^-$	-0.2	-31.0	-3.8	1–2	

TABLE 14

Chemical shifts, COSY correlations and structural types of monosubstituted triborane anions $[B_3H_7(X)]^-$.

Monosubstituted anion	δ(1) (B—X)	$\delta(2,3)$ (B ₂)	COSY correlation	Structure type
$[B_3H_7(Cl)]^-$	-21.0	-14.5	1–(2,3)	
$[B_3H_7(NCS)]^-$	-32.5	-13.0	1-(2,3)	d
$[B_3H_7(NCSe)]^-$	-33.3	-10.0	1-(2,3)	d
$[B_3H_7(NC)BH_3]^-$	-36.1	-9.9	1-(2,3)	b
[B ₃ H ₇ (NC)BH ₂ Cl] ⁻	-34.8	-8.9	1–(2, 3)	
$[B_3H_7(NC)BPh_3]^-$	-34.8	-9.2	1-(2,3)	
$[B_3H_7(NC)BH_2(CN)]^-$	-34.8	-8.9	1–(2,3)	
$[B_3H_7(NC)B_3H_7]^-$ (i)	-34.9	-9.5	1-(2,3)	b
(ii)	-49.5	-12.4	1-(2,3)	b
$[B_3H_7(CN)B_3H_6Cl]^-$	-49.8	-11.9	1-(2,3)	

FIG. 4. Topological representations of crystallographically identified structures of substituted octahydrotriborate anions.

In this latter series observation of only one correlation does not necessarily provide evidence for a two centre B—B bond. Apparent lack of coupling between boron nuclei giving rise to wide resonances may be due to fast relaxation, which results in broad, low-intensity signals whose FIDs decay significantly on the time scale of the COSY pulse sequence. Additional 11B NMR data have been reported for $B_3H_7X^-$ anions, which have $\delta^{11}B$ ($\underline{B}X$ and B(2,3)): X = NCO (-21.0, -21.3); X = Br (-28.4, -12.2; X = F(-15.4, -17.6); and $Ag[B_3H_7(NC)_2](-36.8, -10.2)$.

B. B₄ boranes and carboranes

¹¹B NMR spectra for two B₄H₈ complexes have been published: B₄H₈·PMe₃, δ ¹¹B = -51.5 (dd, 110, J(P-B) = 115, B1) -7.0 (d, 122, B2, 4), -1.8(d, J(B-B)12, B3); and B₄H₈·P(NMe₂)₃, δ ¹¹B = -52.7 (dd, 110, J(P-B) = 180, B1), -7.8 (d, 120, B2, 4), -0.7 (d, 120, B3). The spectrum of the former compound also contains a weak feature at 5.1 ppm attributed to

B(3) in a stereoisomer. The spectrum of the mixed complex $B_4H_8 \cdot P(NMe_2)_3$ has three peaks at -8.2, -16.2 and -46.5 in a 1:2:1 ratio, which are assigned to \underline{B} —N, two unligated boron atoms and \underline{B} —P respectively. On cooling, the \underline{B} —P resonance is resolved into two peaks at -39.3 and -48.9 ppm. This is though to be due to an isomerization [34], which interconverts \underline{B} —P and \underline{B} —N:

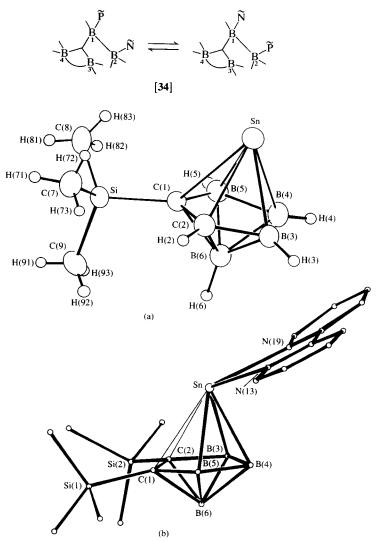


FIG. 5. Structures of (Me₃Si)B₄C₂SnH₅ (a) and its complex with bipyridyl (b).

Three silicon-substituted $B_4C_2H_8$ carboranes have been synthesized: 2,3-(Me₃Si)₂-2,3-B₄C₂H₆, δ^{11} B = 1.9, 1.6 (3B) -50.1(d, 173, 1B); 2-Me₃Si-3-B₄C₂H₆, δ^{11} B = 0.1(d, 153, 1B), -0.7 (dd, 153, 47, 1B), -1.5 (dd, 153, 47, 1B), -48.3 (d, 176, 1B); and 2-Me₃Si-2,3-B₄C₂H₇, δ^{11} B = 0.5, -0.1 (3B), -51.2 (d, 176, 1B). ¹¹² Stannacarboranes, which incorporate tin in the polyhedral framework, have been characterized. ¹⁴⁷ Lewis acidity is, surprisingly, associated with the Sn(II) centre in these materials. Complexation with 2,2'-bipyridyl leads to a distortion from η^5 towards η^3 carborane–tin bonding as shown in Fig. 5.

Chemical-shift data for these stannacarboranes and their derivatives are collected in Table 15. The most-shielded doublet, having unit area, is assigned to B(6), the apical boron. Complexation with bipyridyl or THF is associated with a reduction in J(B-H) for B(3,5) and also a significant shielding of B(6), which may represent an antipodal effect.¹⁴⁸

 ${\bf TABLE~15}$ $\delta^{{\bf 11}}{\bf B}$ chemical-shift data for stannacarboranes.

Compound	$\delta^{11} B$		
$(Me_3Si)_2B_4C_2SnH_4$	24.5 (d, 146, 3 basal B), 20.3 (d, 168, 1B), -4.7 (d, 168, 1B)		
(Me ₃ Si)MeB ₄ C ₂ SnH ₄	22.3 (d, 140, 1B), 20.3 (d, 140, 2B), -6.7 (d, 167, 1B)		
Me ₃ SiB ₄ C ₂ SnH ₅	23.7 (d, 152, 1B), 19.7 (d, 136, 1B), 18.6 (d, 134, 1B), -6.7 (d, 171, 1B)		
(Me ₃ Si) ₂ B ₄ C ₂ SnH ₄ ·bipy	22.3 (d, 110, 1B), 19.8 (d, 82, 2B), -21.1 (d, 162, 1B)		
(Me ₃ Si)MeB ₄ C ₂ SnH ₄ ·bipy	20.0(d, 131, 1B), 15.1(d, 108, 2B), -20.2(d, 164, 1B)		
Me ₃ SiB ₄ C ₂ SnH ₅ ·bipy	21.1 (d, 146, 1B), 15.1 (d, 101, 2B), -23.1 (d, 166, 1B)		
(Me ₃ Si) ₂ B ₄ C ₂ SnH ₄ ·2THF	22.5(d, 106, 3B), -11.0(d, 145, 1B)		
(Me ₃ Si)MeB ₄ C ₂ SnH ₄ ·2THF	22.8 (d, 150, 1B), 18.0 (d, 134, 2B), -9.3 (d, 161, 1B)		
Me ₃ SiB ₄ C ₂ SnH ₅ ·2THF	22.2 (d, 140, 1B), 16.6 (d, 118, 2B), -9.9 (d, 161, 1B)		

C. B₅ boranes and carboranes

The chemistry of pentaborane(9) has continued to attract interest. Two pathways for intramolecular deuterium exchange in labelled pentaborane derivatives, $Me_3SiB_5H_8$ and ClB_5H_8 , have been elucidated by ¹¹B and ²H NMR. One leads to bridge-basal terminal migration and the other, which is at higher energy, results in basal terminal-apical exchange. ¹⁴⁹ New insights into the movement of framework boron atoms in B_5H_9 have resulted from ¹⁰B and ¹¹B studies of ¹⁰B-labelled derivatives. ¹⁵⁰ Aluminum chloride catalyses the exchange between C_6D_6 and B_5H_9 . ¹⁵⁰ 11B NMR spectroscopy indicates that incorporation of D occurs at B(1). An unusual uncatalysed

reaction introduces D into all terminal positions at $45\,^{\circ}$ C and into all positions at $120\,^{\circ}$ C. The Deuterium-labelled B_5H_9 derivatives may also be obtained by reduction of the halogenated analogues with Bu_3SnD .

Dichloroborylpentaborane derivatives have been obtained using BCl_3 — $AlCl_3$ in an analogue of a Friedel–Crafts reaction. Chemical shifts for these and other B_5 compounds discussed in this section are collected in Table 16. The σ - BCl_2 group may be recognized by a high-frequency signal at approx. 75 ppm, closer to B_2Cl_4 than to $RBCl_2$. It exhibits an approx. 120 Hz coupling to the adjacent B(1). However, the B(1) resonance is too broad to reveal J(B-B) fine structure. ¹⁵³ An isomer in which the Cl_2B group bridges two basal boron atoms, μ - $Cl_2BB_5H_8$, has also been reported. ¹⁵⁴

Palladium bromide catalyses the coupling reactions of olefins and B₅H₉ to

TABLE 16 11 B NMR data for B_5H_9 derivatives and related compounds.

Compound	$\delta^{11} \mathrm{B}$			
1-Cl ₂ B ₅ H ₈	$75.8 (q, J(B-B) \approx 124, Cl_2B), -13.1 (d, 161, B2-5),$ -51.8 (br s, B1)			
1-Cl ₂ B-2-ClB ₅ H ₇	$73.0 (q, J(B-B) \approx 122, Cl_2B), -1.6 (s, B2),$ -14.0 (d, 164, B3, 5), -23.6 (d, 174, B4), -51.5 (br s, B1)			
μ -Cl ₂ BB ₅ H ₈	74.8 (s, Cl_2B), -4.5 (d, 160 , $B2-5$), -34.2 (d, 185 , $B1$)			
(1-trans-propenyl)B ₅ H ₈	-13.8(d, 161, J(B-B) = 19, B2-5), -43.3(s, B1)			
(1-cis-propenyl)B ₅ H ₈	-13.1 (d, 162, J (B-B) = 19.7, B2-5), -45.9 (s, B1)			
(2-trans-1-but-1-enyl)B ₅ H ₈	1.2(s, B2), -13.5(d, 153, B3, 5), -18.2(d, 161, B4), -51.6(d, 165, B1)			
(1-trans-1-but-1-enyl)B ₅ H ₈	-12.8 (d, 166, J (B-B) = 20, B2-5), -45.2 (s, B1)			
2,4,6-Et ₃ B ₅ H ₆	2.0 (s, B3), -2.5 (s, B2, 4), -19.5 (d, 151, B5), -49.6 (d, 156, B1)			
$2-(s-Bu)B_5H_8$	3.9 (s, B2), -15.0 (d, 167, B3, 5), -19.4 (d, 163, B4), -53.3 (d, 175, B1)			
μ -(Me ₂ NCH ₂)B ₅ H ₈	16.3 (d, 112), 0.9 (d, 156), -0.7 (d, 117), -4.0 (d, 146), -47.4 (d, 117, B1)			
$1-\text{Et-}\mu\text{-}(\text{Me}_2\text{NCH}_2)\text{B}_5\text{H}_7$	14.3 (d, 88), 4.0 (d, 151), -0.8 (d, 112), -3.5 (d, 154), -36.3 (s, B1)			
1-Br-μ-(Me ₂ NCH ₂)B ₅ H ₇	14.9 (d, 93), 3.7, 1.6, -3.0 (d, 151), -31.8 (s, B1)			
2-[HO(CF ₃) ₂ C]B ₅ H ₈	-8.4 (s, B2), -13.3 (d, 165, B3, 5), -15.0 (d, 165, B4), -52.1 (d, 178, B1)			
1-[HO(CF ₃) ₂ C]B ₅ H ₈	-12.9(d, 168, J(B-B) = 21, B2-5, -41.6(s, B1)			
1-[HO(C(CF ₃) ₂ O]B ₅ H ₈	-14.2 (d, 165, B2-5), -19.9 (s, B1)			
5-[HO($\widehat{CF_3}$) ₂ \widehat{C}]-2,4- $\widehat{B_5C_2H_6}$	15.9 (s, B5), 2.8 (d, 184, B3), -3.6 (d, 182, B6), -20.2 (d, 182, B1, 7)			
5-[HO(C(CF ₃) ₂) ₂ O]-2,4-B ₅ C ₂ H ₆	15.9 (s, B5), 2.8 (d, 184, B3), -3.3 (d, 170, B6), -20.3 (d, 186, B1, 7)			

11B NMR data for 2.4-B₅C₂H₇ derivatives.

7.8 (184)

1.8(193)

5.9 (189)

8.8 (167)

4.3 (180)

5.8 (200)

6.3(183)

6.3 (157)

17.1(s)

6.1 (ca. 180)

12.6(s)

3.2(172)

12.3(s)

10.2(s)

7.7(s)

16.9(s)

12.0(s)

14.0(s)

3.9(s)

16.8(s)

17.4(s)

3.5 (173)

B6

3.0 (173)

0.7(170)

3.2(172)

-0.2(170)

2.2(173)

0.8(176)

3.5 (173)

9.8(s)

9.9(s)

3.9(s)

1.7 (156)

2.3 (130)

10.2(s)

B7

-29.6(186)-31.3(192)

-22.5(s)

-17.1(185)-18.7(190)

-20.1(185)

-19.9(186)

-32.8(190)

-19.0(180)

-18.0(189)

-17.8(184)

-19.3(190)

-19.4(190)

TABLE 17

		, , , , , ,	
			δ^{11} B (J (B–H))
mpound	B1	В3	B5
	· · · · · · · · · · · · · · · · · · ·		

-22.5(185)

-17.1(185)

-18.7(190)

-20.1(185)

-19.9(186)

-19.0(180)

-18.0(189)

-17.8(184)

-19.3(190)

-19.4(179)

-15.8(s)

			δB (J(B-H))	
Compound	B1	В3	B5	
1,3-Cl ₂ -2,4-B ₅ C ₂ H ₅	-13.4 (s)	15.1(s)	3.0 (173)	
$1,5-Cl_2-2,4-B_5C_2H_5$	-14.8(s)	6.5 (190)	12.9 (s)	

1,7-Cl₂-2,4-B₅C₂H₅ 3,5-Cl₂-2,4-B₅C₂H₅

5,6-Cl₂-2,4-B₅C₂H₅

5-Br-2,4-B₅C₂H₆ 5-Br-2,4-B₅C₂H₆-Me₃N

1-Cl-2,4-B₅C₂H₆

5-Cl-6-Me-2,4-B₅C₂H₅

[3-Me₃N-2,4-B₅C₂H₆]BCl₄

[5-Me₃N-2,4-B₅C₂H₆]BCl₄

5-Cl-2,4-B₅C₂H₆-Me₃N

[5-Me₃N-6-Me-2,4-B₅C₂H₅]BCl₄

yield alkenylpentaboranes. Pentaborane is trialkylated by LiHBEt₃ to form $2,4,6-Et_3B_5H_6$, but LiHB(s-Bu)₃ produces only $2-(s-Bu)B_5H_8$. Pentaborane derivatives proposed to contain a Me₂NCH₂ group bridging a basal edge on the B₅ cage have recently been prepared. Hydroxyperfluoropropyl and -pinacolyl substituted boranes and carboranes are produced by the photolysis of $(CF_3)_2CO$ and B_5H_9 . In the carborane derivatives both substituents produce a similar deshielding, but in the 1-substituted pentaborane compounds, $HO(CF_3^+)_2C-B$ is more deshielded than $HO[C(CF_3)_2]_2O-B$, cf. Table 16. 158

 11 B NMR spectra obtained at 160 MHz indicate that 2- and 3-MeB₅H₁₀, previously believed to be pure substances, are actually identical equilibrium mixtures of the two isomers. 159

¹¹B NMR spectroscopy has been used to study rearrangements of various isomers of Cl₂-2,4-B₅C₂H₅. These have been separated and their ¹¹B spectra obtained, cf. Table 17. Antipodal shielding effects are indicated by a 7–9 ppm shielding increase of B(7) in the 1,3- and 1,5-dichloro isomers. ¹⁶⁰

<u>B</u>-halogen-substituted B₅C₂ carboranes form dipolar complexes with Me₃N. Thus Me₃N and 5-Br-2,4-B₅C₂H₆ yield a 1:1 crystalline adduct. The amine is probably attached to B5, as this boron nucleus experiences the greatest relative chemical-shift change on complex formation. Interestingly, only this complex reacts with CH₂Cl₂ (a solvent frequently employed in ¹¹B NMR spectroscopy) to form 5-Cl-2,4-B₅C₂H₆ and (Me₃NCH₂Cl)Br. ¹⁶¹ Reactions of these complexes with BCl₃ leads to BCl₄ salts in which Cl⁻ is replaced by Me₃N, e.g. [5-Me₃N-2,4-B₅C₂H₆]BCl₄. The anion is recognized by its characteristic ¹¹B shift of 7.7 ppm. ¹⁶²

Halogenation of B₆H₆²⁻ has been reinvestigated and the numerous products separated by ion exchange chromatography. The ¹¹B chemical shifts of the various halogen-substituted clusters, which display significant antipodal shielding effects, are shown in Table 18. ¹⁶³, ¹⁶⁴

D. $B_{6.8.9}$ boranes and carboranes

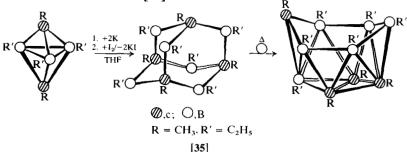
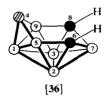

The controlled reduction, with potassium in THF, of $Et_s-1,3-B_3C_2$ affords the dianion, $\delta^{11}B = -14$ (2B), -37 (1B). Reoxidation with iodine provides the perethylated carbon-rich carborane $Et_{10}B_6C_4$. Connectivities established by 2D ¹¹B NMR have led to the proposal that this compound has a *nido-B*₆C₄ structure, similar to that of $B_{10}H_{14}$, with carbon atoms in the 1,2,3 and 9 positions. Using this numbering scheme, the ¹¹B NMR spectrum can be assigned: $\delta^{11}B = 50.3$ (B4), 6.7 (B5,7), -6.3 (B6), -20.7 B(8,10). ¹⁶⁵ Similar reduction of 1,5-Me₂-2,3,4-Et₃-1,5-B₃C₂ leads to a small amount of the dianion, $\delta^{11}B = -10$, -24, -37, and a strong, unassigned signal at 6.5 ppm (halfwidth 900). Subsequent oxidation produces $Et_6Me_4B_6C_4$,

TABLE 18

¹¹B NMR data for derivatives of B₆H₆²⁻.


		$\delta^{11}\mathrm{B}$						
Compound	X = CI	X = Br	X = I					
1-XB ₆ H ₅ ²⁻	-1.0(s, B1)	-7.6(s, B1)	-23.2(s, B1)					
03	-14.5 (d, 147, B2-5)	-14.0(d, 147, B2-5)	-13.1 (d, 150, B2–5)					
	-30.4 (d, 157, B6)	-27.3 (d, 160, B6)	-21.6 (B6)					
$1,2-X_2B_6H_4^{2-}$	-2.4(s, B1, 2)	-8.4(B1,2)	` ,					
-,2-04	-15.4 (B3, 5)	-26.9 (d, 162, B4, 6)						
	-30.3 (d, 159, B4, 6)	, , , ,						
$1,6-X_2B_6H_4^{2-}$	-10.4(B1,6)	-15.0(B1,6)	-25.2(B1,6)					
,2 0 4	-13.6 (B2-5)	-12.6 (d, 159, B2-5)	-13.1 (d, 150, B2–5)					
$1,2,3-X_3B_6H_3^{2-}$	-8.8(B1-3)	-14.0(B1-3)	• • • • • • • • • • • • • • • • • • • •					
-,-,3- 03	-26.7(B4-6)	-23.6(B4-6)						
$1,2,6-X_3B_6H_3^{2-}$	-8.6(B2)	-14.0(B2)	-24.2 (B2)					
, , , 3 0 3	-11.9(B1,6)	-15.4(B1,3,5,6)	• •					
	-16.0 (d, 136, B3, 5)	-23.6 (d, 137, B4)	-26.2 (B1, 6)					
	-26.7 (d, 140, B4)		-12.7 (d, 141, B3, 5)					
	, , ,		-17.7 (d, 136, B4)					
$1,2,3,4-X_4B_6H_2^{2-}$	-11.1(B1,3)	-14.5 (B1, 3)						
, , , , , , , , ,	-13.7(B2,4)	-16.4 (B2, 4)						
	-27.3 (d, 126, B5, 6)	-27.3 (d, 140, B5, 6)						
$1,2,4,6-X_4B_6H_2^{2-}$	-13.8(B1, 2, 4, 6)	-16.0(B1, 2, 4, 6)	-26.1(B1, 2, 4, 6)					
, , , , , , , , , , , , , , , , , , , ,	-18.3 (d, 128, B3, 5)	-15.9(B3,5)	•					
$X_5B_6H^{2-}$	-13.9, -15.7 (B1-5)	-15.8, -17.6 (B1-5)	-22.0(B1)					
5 0	-27.4 (d, 128, B6)	-23.4 (d, 150, B6)	-25.6 (B2-5)					
	, , ,		-15.7 (d, 160, B6)					
$X_6B_6^{2-}$	-17.4	-18.5	-27.4					

whose ¹¹B NMR spectrum comprises a singlet at 65 ppm. It is proposed, and confirmed by X-ray crystallography, that this compound has an adamantane-like skeleton [35]:

It rearranges on heating to an isomer having the $B_{10}H_{14}$ -like structure and whose ¹¹B NMR spectrum resembles that of the decaethyl analogue: $\delta^{11}B = 51$ (1B), 6.4 (2B), -7.9 (1B), -21.2 (2B). However, this material exhibits dynamic behaviour in solution, and above 100 °C the three lowest-frequency resonances coalesce while that at 51 ppm becomes very broad. ¹⁶⁶ These compounds merit further investigation. The compound described as *nido-*2,5-B₇C₂H₁₁ has been misformulated for 15 years and recently shown to be *arachno-*4,5-B₇C₂H₁₃, $\delta^{11}B$ 9.7 (brd), 3.7 (brd), -4.1, -4.8, -6.3, -30.1 (t), -56.8. ³³⁸

The thiacarborane $4.6.8 - B_6 S C_2 H_{10}$ [36] has been obtained from $7.9 - B_8 C_2 H_{12}^-$ and $Na_2 S O_3$ in dilute acid:

It has 11 B resonances at 7.6 (d, 156, 1B), 5.7 (d, 168, 2B), -21.7 (d, 160, 2B) and -35.6 (d, 175, 1B) ppm. Placement of the sulphur atom at the 4 position is indicated, but not proved, by the mirror-plane symmetry indicated by the 11 B NMR spectrum; and by the empirical rule that boron on an open face between two heteroatoms (carbon) gives rise to a relatively narrow resonance. For the 7.6 and -35.6 ppm signals, the halfwidths are 26 and 65 Hz respectively. 167

Chemical-shift data and assignments have been reported for a rare example of an octaborane derivative, $B_8H_{12}NCS^-$: 0.3 (d, 155, B1), 0.98 (d, 140, B6,7), -10.4 (d, 140, B5), -23.6 (d, 93, B4) -27.8 (t, 90, B9), -52.0 (d, 146, B2). The numbering scheme and proposed structure are

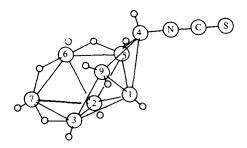


FIG. 6. Proposed structure of $[B_8H_{12}(NCS)]^-$.

shown in Fig. 6. For comparison, $B_8H_{10}NEt_3$ has $\delta^{11}B = 6.5$ (2B), 1.9 (d, 3B, 148), -21.9 (d, 2B, 136) and -30.5 (d, 1B, 136). ¹⁶⁹

Incisive use of 2D COSY and ¹H decoupling techniques has led to an unambiguous assignment of the ¹¹B NMR spectra of B₈CH₁₄ and its conjugate base B₈CH₁₃, cf. Fig. 7. In B₈CH₁₄ assignments are 17.0 (B7), -3.7 (B1), -6.3 (B5,9), -34.9 B(6, 8), -41.1 (B2, 3) ppm. Coupling between B(6, 8) and B (7) was noted, even though, in general, boron atoms connected by bridging hydrogen atoms do not give rise to cross-correlated peaks. In contrast, B(6, 8) and B(5, 9), also connected by bridging hydrogens, do not observably couple. The absence of scalar B-B coupling is thought to be associated with low electron density along the B-B vector in the B—H—B unit; however, if the hydrogen bridge is sufficiently asymmetrical, this restriction may not apply. Assignments for Li(B₈CH₁₃) are 4.0 (B5, 9), -3.9 (B7), -21.5 (B1), -30.4 (B2, 3), -35.2 (B6, 8) ppm. In this anion there is considered to be a unique hydrogen atom that bridges B(6, 7, 8). Now, strong coupling appears between B(5, 9) and B(6, 8), indicating the presence of an unsymmetrical hydrogen bridge; B(6, 8) and B(9, 7) are weakly coupled. There is a reduction in J(B(1)-B(5,9)) on deprotonation, attributed to a shift in electron density on the open face of the carborane cluster away from positions adjacent to the carbon atom and towards B(6, 8). Thus B(5, 9) has a greater shielding on removal of a proton. Reduction in B(7) coordination number probably accounts for its large lowfrequency shift in the conjugate base. Interestingly, saturation-transfer experiments demonstrate that the endo-C-H and all three bridging

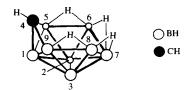


FIG. 7. Proposed structure of CB₈H₁₄.

hydrogen atoms interchange at room temperature in the anion but not in the neutral carborane. One hopes that, eventually, absolute values of ${}^{1}J(B-B)$ may be obtained and correlated with calculated B-B bond orders.

Use of labelled derivatives has led to an assignment of the 64 MHz ¹¹B NMR spectrum of 5,6-B₈C₂H₁₂, cf. Table 19. ¹⁷¹

The ^{11}B NMR spectrum of arachno-6-Me₃Si-6,9-B₈C₂H₁₃, which is iso-electronic with and similar in structure to B₁₀H₁₄²⁻ (cf. Fig. 8), has been assigned with the use of 160.4 MHz and COSY data: $\delta^{11}B = 5.7$ (B2), 4.8 (B4), -15.0 (B8, 10), -16.2 (B5, 7), -35.6 B(1, 3). The specific of Na₂(6,9-B₈C₂H₁₀) with HX yields 5-X-6,9-B₈C₂H₁₃ and The NMR data for a series of X = halogen derivatives are presented in Table 20.

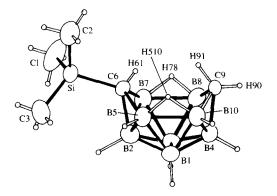


FIG. 8. Molecular structure of *arachno*-6-(SiMe₃)-6,9-B₈C₂H₁₃ showing the atom-numbering scheme.

The tetracarbon carborane Me₄B₈C₄H₈ exists in solution as two readily interconvertible isomers: A (δ^{11} B = 10.6 (d, 171, 2B), 8.7 (d, 216, 2B), -22.3 (d, 159, 2B) and -29.0 (d, 147, 2B)) and B (δ^{11} B = -1.5 (d, 127, 2B), -2.3 (d, 129, 4B), -10.7 (d, 144, 2B)), cf. Fig. 9. One of the ¹J(B-H) values, 216 Hz, appears to be anomalously large. In the solid state the tetramethyl

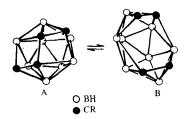
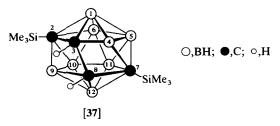
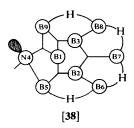


FIG. 9. Interconversion of A and B isomers of R₄C₄B₈H₈.


 $TABLE \ 19$ ^{11}B NMR data for 5,6-B $_8C_2H_{12}$ derivatives.

	$\delta^{11}B$							
Compound	В7	B1	В8	В3	В9	B10	B2	B4
μ -D ₂ -B ₈ C ₂ H ₁₀	6.8	5.2	3.6	-2.1	-4.2	-9.1	-27.0	-38.8
4-ClB ₈ C ₂ H ₁₁	7.2	6.4	4.0	-0.8	-3.2	-10.0	-26.9	-21.8(s)
8-ClB ₈ C ₂ H ₁₁	9.3	5.3	11.7(s)	-2.4	-6.2	-15.5	-27.2	-37.5
10-ClB ₈ C ₂ H ₁₁	7.6	6.7	-0.2	-0.2	-6.7	-10.0	-27.1	-38.0
$3,4,8,9-B_8C_2D_4H_8$	6.5	5.0	3.3(s)	-2.6(s)	3.7(s)	-0.2(s)	-27.2	-39.1(s)
7-BrB ₈ C ₂ H ₁₁	9.6(s)	7.4	5.7	-1.0	-2.5	-10.0	-26.3	-39.2
$7-IB_8C_2H_{11}$	-4.5(s)	6.8	6.7	0.0	-2.8	-8.8	-26.0	-38.3
$3,4,7-B_8C_2D_3H_9$	6.5 (s)	5.0	3.3	-2.6(s)	-3.7	-10.0	-27.2	-39.1(s)

TABLE~20 $^{11}B~NMR~data~for~5\text{--}XB_8C_2H_{13}~derivatives.$


	$\delta^{11}\mathrm{B}\left(J(\mathrm{B-H}) ight)$							
	B2	B4	В5	B10	В8	В7	B1	В3
F	3.3 (145)	0.7 (156)	4.6	-19.4(135, 51)	-21.5 (145, 51)	-23.7 (140, 49)	-39.3 (154)	-39.3 (154)
Cl	5.9 (164)	1.9 (162)	-5.5(57)	-17.2(158,55)	-18.2(161,54)	-20.6(152,49)	-37.5(150)	-37.9(151)
Br	6.6 (166)	2.5 (164)	-13.0(61)	-16.3(157,54)	-17.3(157,51)	-19.6(150,50)	-35.0(154)	-37.4(154)
I	7.2 (175)	3.4(173)	-30.0(50)	15.8 (160)	15.8 (160)	18.1 (140, 50)	-34.3(157)	-36.7(157)
$OB_8C_2H_{13}$	2.0 (179)	0.8 (173)	3.3	-20.4(154,43)	-21.2(157,59)	-23.8(173,35)	-38.8(155)	-40.0 (144)

derivative adopts structure A, whereas the tetraethyl compound crystallizes in structure B. ^{11}B NMR spectroscopy has been used to determine thermodynamic parameters for the solution-phase rearrangements. ^{1}H NMR data suggest that B undergoes additional rearrangement processes that are not manifest in the ^{11}B spectra. 174 Pyrolysis of 2,3-(Me₃Si)₂-2,3-B₄C₂H₆ yields directly the four-carbon carborane (Me₃Si)₂B₈C₄H₁₀ [37]:

The 11 B NMR spectrum has been assigned: 10.0 (d, 152, B4), 8.9 (d, 156, B9), 6.2 (d, 158, B6,11), -17.3 (d, 178, B5,10) and -20.9 (d, 181, B1, 12) ppm. Unlike the alkyl derivatives $R_4B_8C_4H_8$, this compound has a static structure in solution. 175

Hydrolysis of $B_9H_{12}N$ yields $B_8H_{13}N$. The structure of this azaborane may be derived from $B_{10}H_{14}$ by replacing B6 by N and deleting B9; four B—H—B bridges span the B—B bonds on the open face of the molecule [38]:

An assignment of the 32 MHz ¹¹B NMR spectrum has been proposed: 7.8 (B7), -7.1 (B5, 9), -25.4 (B1), -46.0 (B2, 3), -47.7 (B6, 7) ppm. An NMR study of its conjugate base would be of interest, since the anion should exhibit bridge-proton mobility. The sulphur analogue $B_8H_{12}S$ has been obtained from $B_{10}H_{14}$ and aqueous KHSO₃. The proposed assignment of the 32 MHz ¹¹B NMR spectrum is: $\delta^{11}B = 13.8$ (B7), -3.8 (B5, 9), -12.3 (B1), -41.3 (B2, 3, 6, 8). ¹⁷⁶

The boron subhalide B_9Cl_8H , prepared by pyrolysis of $(H_3O)_2B_{10}Cl_{10}\cdot xH_2O$, was originally reported to exhibit four ¹¹B resonances. This reaction has been reinvestigated and found to afford numerous clusters, containing nine and thirteen to twenty boron atoms,

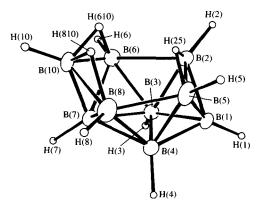


FIG. 10. Structure of B₉H₁₂ showing numbering scheme.

that are exceedingly difficult to separate. Pure compounds for which ^{11}B NMR data are obtained are: $B_9Cl_7H_2$, $\delta^{11}B = 69.8$; and B_9Cl_8H , $\delta^{11}B = 63.2$, 29.8 (d, 165). Thus B_9Cl_8H presumably has a tricapped trigonal prismatic geometry. 177

¹¹B NMR data for $B_9H_{12}^-$ may now be interpreted in terms of the recently determined structure shown in Fig. 10. The assignments are -9.9 (B1, 6, 8), -13.9 (B3, 4), -14.5 (B10), -34.1 B(2, 5), -51.9 (B7) ppm. At room temperature, the two types of B—H—B protons rapidly interconvert. ¹⁷⁸ NMR data, including relaxation times, for $B_9H_{14}^-$ and a series of derivatives have been published (Table 21). Line-narrowed spectra indicate

TABLE 21 ^{11}B NMR data for $B_0H_{14}^-$ and some derivatives.

Compound	δ^{11} B
Me ₄ N(B ₉ H ₁₄)	-6.8 (d, 137, B5, 7, 9), -19.2 (d, 136, B4, 6, 8), -22.4 (d, 138, B1, 2, 3)
PPN[B ₉ H ₁₃ (NCS)]	14.8 (d, 134, B7), 4.2 (d, 140, B1), -16.4 (d, 146, B5, 9), -18.0 (d, 143, B6, 8), -22.0 (s, B4), -38.3 (d, 146, B2, 3)
PPN[B ₉ H ₁₃ (NCBH ₃)]	16.2 (d, 130, B7), 4.8 (d, 137, B1), -15.5 (d, 141, B5, 9), -19.4 (d, 124, B6, 8), -25.5 (s, B4), -38.6 (d, 146, B2, 3), -43.0 (NCBH ₃)
$B_9H_{13}(SMe_2)$	18.8 (d, 152, B7), 5.1 (d, 134, B1), -15.8 (d, 144, B5, 9), -20.8 (d, 150, B6, 8), -23.0 (d, 131, B4), -38.6 (d, 149, B2, 3)
B ₉ H ₁₃ (CH ₃ CN)	17.7 (d, 155, B7), 5.6 (d, 137, B1), -14.0 (d, 145, B5, 9), -20.2 (d, 150, B6, 8), -27.0 (d, 134, B4), -38.3 (d, 149, B2, 3)
B ₉ H ₁₃ (PMe ₂ Ph)	$18.4 (d, 160, B7; T_1 = 1.9 \text{ ms}), 3.4 (d, 135, B1, 8.2 \text{ ms}), \\ -15.1 (d, 145, B5, 9, 8.5 \text{ ms}), -21.8 (d, 140, B6, 8, 4.0 \text{ ms}), \\ -36.3 (B4, 13.0 \text{ ms}), -38.5 (d, 145, B2, 3, 18.0 \text{ ms})$

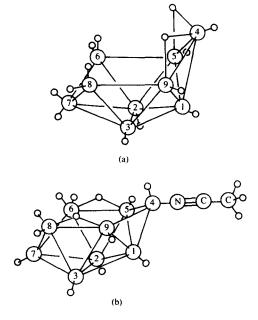


FIG. 11. Structures of $[B_9H_{14}]^-$ (a) and $B_9H_{13}(MeCN)$ (b).

that the $\underline{B}(6,8)$ H₂ resonances are in fact doublets of doublets with coupling to the nonequivalent bridge hydrogens, J(B-H(exo)) and J(B-H(endo)), being 150 and 60 Hz respectively. Note that the numbering system employed (Fig. 11) differs from that used above for $B_9H_{12}^{-1}$.

The 2D COSY ¹¹B spectrum of B₉H₁₃(SMe₂) has been reported. Table 22 summarizes the B-B couplings observed. Note that B1 and B2, 3 are coupled to all adjacent ¹¹B nuclei; and B5, 9 do not couple to their hydrogen-bridged neighbours, B6, 8. The 2D spectra of B₉H₁₃(NCS)⁻ and B₉H₁₃-

TABLE 22
2D 11B NMR data for B₀H₁₃(SMe₂).

¹¹ B nucleus	Couplings detected
7	B(2,3)
1	B(5,9), B(4), B(2,3)
5,9	B(1), B(4), B(2,3)
6,8	B(2,3)
4	B(1), B(5,9)
2,3	B(7), B(1), B(5,9), B(6,8)

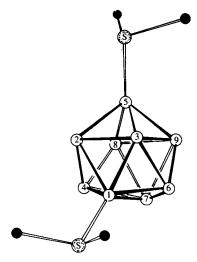


FIG. 12. Molecular structure of 1,5-B₉H₇(SMe₂)₂.

(NSCe)⁻ are stated to be similar. ¹⁸⁰ The ¹¹B NMR spectrum of crystallographically characterized 1,5-B₉H₇(SMe₂)₂ (Fig. 12) shows peaks at δ^{11} B = 6.3 (B5), -0.2 (d, 148, B(4, 6), -9.5 (B1), -12.9 (d, 143, B7), -15.9 (d, B2, 3) and -17.5 (d, B8, 9). Above 25 °C rearrangement to, probably, the 4,5- and 1,8-isomers occurs. ¹⁸¹

Decaborane reacts with NaNO₂ in THF to give, after addition of aqueous acid, B₉H₁₂NH⁻. This undergoes protonation and loss of H₂ thus forming the acidic B₉H₁₁NH. ¹¹B NMR data are available for these materials and a series of Lewis-base complexes of B₉H₁₁NH, cf. Table 23 and Fig. 13, which shows the structure of B₉H₁₁NH(c-C₆H₁₁NC) and the numbering scheme employed. Chemical-shift trends in $B_9H_{12}E$ (E = NH, S, Se) are similar, but B8.10 and the distal B9 are most affected by variation in the heteroatom. The ¹¹B spectrum of B₉H₁₂S⁻ is assigned with the use of specifically labelled derivatives, which are unavailable for E = NH and Se. Two-dimensional ¹¹B studies would therefore be of interest. Pyrolysis of B₉H₁₁NH yields B_oH_oNH, which has a bicapped square antiprismatic structure with the NH group at one of the two four-coordinate vertices. Assignment of the equatorial 11B resonances cannot be made on symmetry grounds, and 2D spectra might be helpful in distinguishing the B(2-5) and B(6-9) sets. 182 thiaboranes B₀H₁₁S(t-BuNC) and Me₄N[B₀H₁₁S(CN)] $\delta^{11}B = 9.2$ (d, 147, 1B), -4.2 (d, 153, 1B), -9.1 (d, 152, 2B), -29.9(d, 149, 2B), -34.0 (d, 126, 1B) and -36.0 (d, 147, 2B); and 9.2(d, 137, 1B), -6.1 (3B), -18.7 (d, 117, 1B), -29.9 (d, 147, 2B) and 33.3 (d, 142, 2B) respectively. 183

TABLE 23 11 B NMR data for $B_9H_{11}NH$ and related derivatives.

Compound (area ratio)	δ^{11} B (J (B–H))
PPN[B ₉ H ₁₂ NH] (1:2:1:1:4)	-1.2 (127), -12.6 (156), -20.4,
	-22.3(119), -42
$B_9H_{11}NH(1:2:2:2:1:1)$	15.2(162), 11.8(160), -1.5
	(140), -14.5(149), -27.4
	(156), -33.0(176)
$B_9H_{11}NH\cdot CN(t-C_4H_9)(1:3:2:1:2)$	4.6(136), -12.7(142), -36.1
, , , , , , , , , , , , , , , , , , , ,	(137), -38, -40.5(144)
$B_9H_{11}NH\cdot CN(C_6H_{11})(1:3:3:2)$	5.1(131), -11.8, -36.0(151),
) II (3 II) ()	-39.7(143)
$B_9H_{11}NH \cdot py (1:3:1:2:2)$	2.4(127), -11.4(121), -19.5
	(143), -38.1 (121), -40.8 (140)

Proposed assignments for ¹¹B NMR resonances of selected $B_9H_{11}E \cdot L$ compounds (E = NH, S, Se).

	$\delta^{11}\mathrm{B}$					
Compound	B(4)	B(5,7)	B(2)	B(9)	B(8, 10)	B(1, 3)
CsB ₉ H ₁₂ S	-4.0	-7.9	-11.6	-15.0	-33.4	-36.6
$PPN(B_9H_{12}NH)$	-1.2	-12.6	-20.4	-22.3	-42	-42
$B_9H_{11}Se \cdot N(C_2H_5)_3$	2.6	-8.8	-8.8	-4.0	-29.8	-38.1

11B NMR data for BoHoNH and its derivatives.

	δ^{11} B (J (B–H))				
Compound	B(10)	B(2,3,4,5)	B(6, 7, 8, 9)		
B ₉ H ₉ NH (CH ₃) ₄ N[B ₉ H ₉ N] B ₉ H ₉ NCH ₃	61 (165) 50 (149) 59.1 (168)	-6.1 (175) -8.3 (161) -1.5 (175)	-21.5 (153) -18.3 (140) -20.8 (150)		

Base degradation of $1,2-(HS)_2-1,2-B_{10}C_2H_{10}$ yields $Me_4N-[(B_9C_2H_{10}(SH)_2], \delta^{11}B = -5.9$ (d, 2B, 140), -7.5 (d, 165, 1B), -16.2 (d, 142, 4B), -33.0 (d, 124, 1B) and -34.2 (d, 127, 1B). This compound, on oxidative coupling, forms the S—S linked carborane anion $(B_9C_2H_{11})(\mu-S_2)_2(B_9C_2H_{11})^{2-}$, $\delta^{11}B = -4.2$ (B9,11), -9.4 (B3), -15.0, -17.1 (B2, 4, 5, 6), -32.5 (B10) and -34.6 (B1). The complexing agent 18-crown-6 promotes reaction of $1,12-B_{10}C_2H_{12}$ with potassium hydroxide to give K[2,9-B₉C₂H₁₂], which has one carbon in each of the two 5-atom

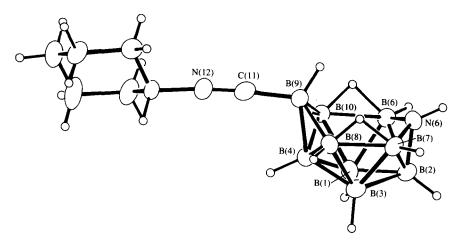


FIG. 13. ORTEP diagram of 9- $[(C_6H_{11})NC]$ -6-NHB₉H₁₁.

equatorial belts and $\delta^{11}B = -13.1$ (d, 140, 2B), -19.2 (d, 148, 2B), -21.6 (d, 148, 2B), -28.5 (d, 139, 2B) and -42.9 (d, 156, 1B). ¹⁸⁵

E. $B_{10,11,12}$ boranes and carboranes

Electrophilic halogenation of $B_{10}H_{10}^{2-}$ has been reinvestigated. Use of advanced chromatographic techniques permits the separation and independent characterization of 1- and $2-XB_{10}H_{9}^{2-}$; and 1,6- and 1,10- $X_{2}B_{10}H_{8}^{2-}$ (X = Cl, Br, I). ¹¹B NMR data for these ions are given in Table 24. ¹⁸⁶

The diazoketone 1-N₂CH-CO-CH₂-1,2-B₁₀C₂H₁₀ has been converted via a carbene intermediate to the cyclic ketone 1,6-(2-C₃H₄O)-1,2-B₁₀C₂H₁₀ in which the C₃ ring connects C1 and B6. It has $\delta^{11}B = -2.9$ (1B), -4.9 (s, 1B), -7.0 (d, 1B), -10.5 (br d, 4B), -14.1 (d, 2B), -16.0 (d, 1B), and for the analogous 1,6-(2-C₄H₆O)-1,2-B₁₀C₂H₁₀, $\delta^{11}B = -2.4$ (d, 1B) -5.3 (s, 1B), -7.7 (d, 1B), -10.0 (d, 2B), -12.7 (d, 2B), -13.7 (d, 2B) and -17.1 (d, 1B). The location of the B-terminus of the C₃ bridge is determined by a ¹H NOE experiment. The C₃ ketone is transformed into the cyclopentene analogue 1,6-(C₃H₄O)-1,2-B₁₀C₂H₁₀, $\delta^{11}B = -0.1$ (s, 1B), -4.2 (d, 1B), -7.9 (d, 2B), -9.7 (d, 2B), -11.9 (d, 1B), -13.0 (d, 2B), -17.6 (d, 1B). The relative shielding decrease of the vinyl-substituted boron may be due to a combination of electronic and ring-strain effects, partioning of which may be possible when a larger series of compounds is studied. ¹⁸⁷ ¹¹B NMR spectra of a series of bis(mercapto)-1,2-carboranes have been published (Table 25).

TABLE~24 $^{11}B~NMR~data~for~halogenated~B_{10}H_{10}^{2-}-derivatives.$

		$\delta^{11}\mathrm{B}$						
Compound	X = Cl	X = Br	X = I					
2-XB ₁₀ H ₉ ²⁻	-2.0 (d, 141, B1, 10) -9.2 (B2)	-1.6 (d, 145, B1, 10) -13.2 (B2)	-0.6 (d, 144, B1, 10) -25.6, -26.5 (B2, 3, 5, 7, 8, 9)					
	-24.4 (B3, 5, 6, 9)	-24.6, -25.6 (B3, 5, 6, 9)	-28.8 (B4)					
	-27.6 (d, 133, B7, 8) -30.8 (d, 126, B4)	-27.3 (d, 134, B7, 8) -30.1 (d, 137, B4)						
$1-XB_{10}H_9^{2-}$			0.0 (d, 168, B10) -8.9 (B1) -25.2 (d, 132, B2-5)					
			-25.8 (d, 127, B6-9)					
$1,6-X_2B_{10}H_8^{2-}$			-0.1 (d, 149, B10) -8.9 (B1) -22.0, -23.1 (B2, 3, 7, 9) -26.5, -28.7 (B4, 5, 6, 8)					
$1,10-X_2B_{10}H_8^{2-}$			-5.9 (B1, 10) -24.8 (d, 133, B2-9)					

TABLE~25 $^{11}B~NMR~data~for~1,2-(HS)_2-1,2-B_{10}C_2H_{10}~derivatives.$

Compound	$\delta^{11}\mathrm{B}$
1,2-(HS) ₂ -1,2-B ₁₀ C ₂ H ₁₀	-4.0(d, 152, 2B), -8.1(d, 171, 6B), -10.0(d, 171, 2B)
$1,1',2,2'-(S_2B_{10}C_2H_{10})_2$	-3.6(d, 141, 2B), -7.3(d, 161, 8B)
$(NH_4)_2(1,2-S_2B_{10}C_2H_{10})$	-2.4(d, 171, 2B), -9.0(d, 156, 6B), -11.4(d, 137, 2B)
$(Me_4N)_2[(CH_2S)_2B_9C_2H_{10}]$	-7.8 (d, 140, 2B), -10.6 (d, 168, 1B), -17.9 (d, 130, 2B),
	-18.8(d, 143, 2B), -33.1(d, 122, 1B),
	-36.6(d, 140, 1B)
$(Me_4N)_2(-CH_2SB_9C_2H_{10}CS-)$	-11.4(d, 134, 2B), -15.2(d, 159, 1B),
, , , , , , , , , , , , , , , , , , , ,	-17.3 (d, 159, 2B), -18.8 (d, 146, 2B),
	-31.2 (d, 130, 1B), -35.6 (d, 134, 1B)
$(1,2-B_{10}C_2H_{10}SC_2H_4)_2$	-3.6 (d, 170, 2B), -7.3 (d, 149, 8B)

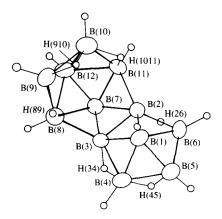


FIG. 14. Structure of B₁₂H₁₆.

The ¹¹B NMR spectrum of PPN(4-Me₂SB₁₁H₁₀), in which the Me₂S ligand is attached to five-coordinate boron, shows peaks at -10.2 (s, 1B) and -16.9 (d, 134, 10B). The spectrum is invariant to temperatures as low as -140 °C at 126.7 MHz, indicating that the B₁₁ cluster has a very low barrier to polytopal rearrangement. ¹⁸⁹

B₁₂H₁₆, the first neutral B₁₂ hydride, has been synthesized by oxidative

TABLE 26

11B NMR data for halogenated B₁₂H₁₂²-derivatives.

		δ^{11} B	
Compound	X = Cl	X = Br	X = I
1-XB ₁₂ H ₁₁ ²⁻	-2.5(B1)	-7.6(B1)	-21.5 (B1)
••	-14.2 (d, 135, B2-6)	-13.7 (d, 122, B2-6)	-13.3 (d, 123, B2-6)
	-15.9 (d, 134, B7-11)	-15.1 (d, 120, B7-11)	-14.7 (d, 124, B7-11)
	-19.5 (d, 134, B12)	-18.2 (d, 115, B12)	-16.5 (d, 152, B12)
1,2-X ₂ B ₁₂ H ₁₀ ²⁻	-3.4(B1,2)	-8.5 (B1, 2)	
	-13.5 (d, 130 , $B3$, 6)	-12.7 (d, 120, B3, 6)	
	-15.0 (d, 137,	-14.1 (d, 129,	
	B4, 5, 7, 11	B4, 5, 7, 11	
	-17.1 (d, 160, B8, 10)	-16.0(d, 128, B8, 10)	
	-18.8 (d, 137, B9, 12)	-17.2 (d, 120, B9, 12)	
$1,2,3-X_3B_{12}H_9^{2-}$	-4.3(B1,2,3)		
, , 3 .2 ,	-14.1 (d, 141, $B4$, 6, 7)	1	
	-16.0 (d, 166 , $B5$, 8 , 11	l)	
	-18.7 (d, 165, B9, 10,	12)	



FIG. 15. Trends in the ¹¹B chemical shifts of chlorinated B₁₂H₁₂² derivatives.

coupling of $B_6H_9^-$ with FeCl₂/FeCl₃. Its structure has been determined (Fig. 14) and its ¹¹B NMR spectrum assigned with the use of 2D data: 15.4 (d, 193, B7), 13.4 (d, 203, B4,6), 11.4 (d, 213, B5), 4.5 (B2, 3, 9, 10), -18.4 (d, 150, B8,11), -40.8 (d, 156, B1) and -43.1 (d, 159, B12). ¹⁹⁰

Halogenation of $B_{12}H_{12}^{2-}$ has been reinvestigated, and ion-exchange chromatography used to separate $1-XB_{12}H_{11}^{2-}$, $1,2-X_2B_{12}H_{10}^{2-}$ and $1,2,3-X_3B_{12}H_9^{2-}$ (X = Cl, Br, I). ¹¹B NMR data for these compounds are presented in Table 26, and Fig. 15 displays trends in chemical shifts for $X = Cl_1^{191}$

VI. METALLOBORANES AND METALLOCARBORANES

Borane and carborane compounds containing transition metals continue to be the subject of intense study. Structural and bonding principles pertaining to metalloboranes have been thoroughly reviewed. 192,193

A. B₁ metalloboranes and metallocarboranes

Metal-boron couplings have been compared for NaBH₄, Al(BH₄)₃, Sc(BH₄)₃, Y(BH₄)₃ and Zr(BH₄)₄, 0.9, 15.5, <2 and 18 Hz respectively; δ^{11} B values are -40, -37, -18.7, -23.2 and -8.0 respectively. However,

it has been pointed out that a comparison of observed J(A-B) values may be misleading and that one must refer to reduced couplings K(A-B), which are given by

$$J(A-B) = K(A-B) \gamma_A \gamma_B h/4\pi^2,$$

where $\gamma_{A,B}$ are the gyromagnetic ratios of the nuclei involved. Thus K(A-B) values for $Al(BH_4)_3$, $Sc(BH_4)_3$ and $Zr(BH_4)_4$ are 0.90, 1.61 and $5.02 \times 10^{20} \,\mathrm{N\,A^{-2}\,m^{-3}}$. K values usually increase with atomic number, but the $^{89}\mathrm{Y^{-11}B}$ coupling in $Y(BH_4)_3$ is unobserved, probably because the bonding is more ionic than in the Sc analogue. $^{45}\mathrm{Sc}$ NMR data have been obtained for $Sc(BH_4)_3$; there is a small $^{10}\mathrm{B}$ isotope effect, 6 Hz to high frequency. $\delta^{11}\mathrm{B}$ for Cp_2ScBH_4 is -17.7, with $J(^{45}\mathrm{Sc^{-11}B}) = 15.5 \,\mathrm{Hz}.^{194}$

An unusual example of a B-H-Fe three-centre bond is found in FeH(Me₂PC₂H₄PMe₂)HBH₃, which has $\delta^{11}B = -38.1$. The ¹¹B resonance is an 82 Hz quintet resulting from coupling with four dynamically equivalent protons. 195 A similar situation prevails in (terpyridyl)CoH₂BH₂, $\delta^{11}B = 12.9$, ${}^{1}J(B-H) \approx 80$ Hz, which features a $Co(\mu-H)_{2}BH_{2}$ unit. B-H coupling is not observed in the ¹H NMR spectrum owing to rapid quadrupolar decoupling. 196 The lanthanide borohydrides [(Me₃Si)₂Cp]₂- ScH_2BH_2 , $[(Me_3Si)_2Cp]_2Y(THF)H_2BH_2$, $[(Me_3Si)_2Cp]La(THF)H_3BH$ and $[(Me_3Si)_2Cp]_2Sm(THF)H_3BH$ have been studied. $\delta^{11}B$ values for the latter three compounds are -22.0, -26.7 and -43.1 respectively. Only for the Sc compound is the BH₄ ligand bidentate and nonfluxional, as revealed by a broad signal in the ¹¹B NMR spectrum that transforms into a quintet at 100 °C. The Y, La and Sm borohydrides are fluxional, and the latter two contain tridentate BH₄. ¹⁹⁷ The compound Yb[HB(PZ)₃]₃ exhibits in its ¹¹B NMR spectrum peaks at $57.7 \, (B1), -69.1 \, (B2) \, \text{and} \, 16.3 \, (B3) \, \text{ppm}; \, B1, 2 \, \text{are}$ each contained in an η^3 HB(PZ)₃ ligand and are strongly influenced by the paramagenetic metal whereas B3 is contained in an η^2 (PZ)BH(PZ)₂ moiety, as shown in Fig. 16. Reference to the solid-state structure, which appears to persist in solution, and the McConnell-Robertson expression for dipolar shifts indicates that the ¹¹B chemical shifts are affected primarily by a dipolar mechanism and that contact shifts are less important. 198 Dimeric $[Th(BH_3Me)_4]_2 \cdot Et_2O$ has $\delta^{11}B = 19.3$, but the aggregation is thought not to persist in hydrocarbon solutions. ¹⁹⁹ The ¹¹B NMR spectrum of U(BH₄)₄ in THF has been interpreted as indicating that dissociation to $U(BH_4)_6^{2-}$ and $U(BH_4)_3^+$ occurs. Similarly, $U(BH_4)_3$ is considered to dissociate in THF to form $U(BH_4)_5^{2-}$ and $U(BH_4)_2^{+}$.

Reaction of $(Me_5Cp)_2(\mu-H)_3Ir_2^+$ with LiBH₄ gives $(Me_5Cp)_2(\mu-H)_-(\mu-BH_4)H_2Ir_2$, $\delta^{11}B=5.5$ (br s, -50 °C in toluene). In this compound, a bidentate BH₄ ligand bridges two iridium atoms. Hydrolysis yields $(Me_5CpIrH_3)_2$. This borohydride is interesting in that it may serve as a

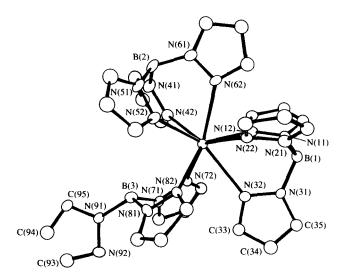


FIG. 16. Perspective view of the solid-state structure of Yb(HBPz₃)₃ perpendicular to the approximate molecular mirror plane. The atom-numbering scheme is also shown.

model for intermediates in the reduction of coordination compounds by BH_4^- . Another example of such a material is $V_2Zn_2H_4(BH_4)_2(PMePh_2)_4$. It has a $P_4V_2[(\mu-H)_2ZN]_2$ core with a bidentate BH_4 ligand attached to each zinc atom. The ¹¹B chemical shift, -30.6 ppm, is quite different from that of the above Ir borohydride. ²⁰²

Reaction of Na[Fe(CO)₄COMe], BH₃·THF and Fe(CO)₅ yields, after acidification, numerous products including HFe₃(CO)₁₀BH₂. The proposed structure of the former is shown in Fig. 17. Its ¹¹B NMR spectrum comprises a single resonance at 56 ppm with 145 and 50 Hz coupling to the terminal and bridge protons respectively. These values appear to be typical for boron bonded to a Fe₃ triangle. Deprotonation removes one of the B—H—Fe bridges and in PPN[Fe₃(CO)₁₀BH₂] the ¹¹B parameters, δ ¹¹B = 57.4 (dd, 130, approx. 50), are little changed. ²⁰³ The cluster ferraboranes

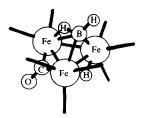


FIG. 17. Proposed structure of HFe₃(CO)₁₀BH₂.

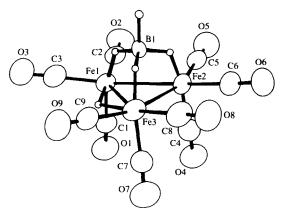


FIG. 18. Structure of HFe₃(CO)₉BH₄. Hydrogen-atom locations are based on spectroscopic data.

 $HFe_3(CO)_9BH_3R$ (R = H, $\delta^{11}B = 1.8$, halfwidth 230 Hz; R = Me. $\delta^{11}B = 22.1$, quintet, ${}^{1}J(B-H) = 40$) have been prepared, and the structure of the former is shown in Fig. 18. In this compound, the B-H-Fe protons become equivalent at approx. -50°C and at 80°C, the B-H-Fe and Fe-H-Fe protons interconvert, but the terminal B-H proton remains uninvolved. Chemical shifts for the conjugate bases PPN-[HFe₃(CO)₉BH₂R] (R = H, δ^{11} B = 6.2, br dq; R = Me, δ^{11} B = 29.3. br q, 53), which are also at the low end of the range expected for fourcoordinate boron, refelect a small relative deshielding and a small increase in J(B-H). The ¹¹B spectra of these anions show that boron is coupled to three equivalent B-H-Fe protons, and therefore the Fe-H-Fe and B—H—Fe protons must be rapidly interconverting at room temperature. This process, rapid on the ¹¹B NMR timescale, also averages Fe environments, but two types of iron can be detected by Mössbauer spectroscopy, which has a shorter timescale. A linear correlation between J(B-H(terminal)) and the number of B-H-Fe interactions in Fe₃B clusters has been noted (Fig. 19).204

A cluster-expansion reaction using Fe₂(CO)₉ converts HFe₃(CO)₉BH₃ [39] to HFe₄(CO)₁₂BH⁻ [40]:

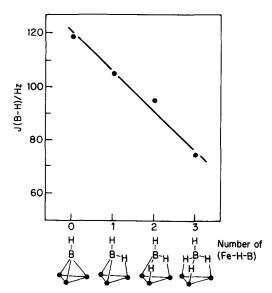


FIG. 19. Plot of J(B-H) (terminal) versus number of Fe-H-B interactions.

In the structures of these two anions Fe atoms are displayed as vertices. The ¹¹B shift of the Fe₄B cluster is 150.0 ppm, reflecting a gross perturbation in boron chemical environment on passing from an apical boron bearing a terminal hydrogen to a boron, surrounded by four iron atoms, with a B—H—Fe bridge. ²⁰⁵ The ¹¹B chemical shift of the conjugate acid HFe₄(CO)₁₂BH₂ is 116 ppm (s); this is consistent with the crystallographically confirmed proton addition to a B—Fe edge. ²⁰⁶

The borane complex CpMo(CO)₂[PhP[N(SiMe₃)₂]](μ -H—BH₂) features a BH₂ group bonded to phosphorus; and a B—H—Mo bridge. It has a single ¹¹B resonance at -55.6 ppm with J(P-B) = 52 Hz. No B–H coupling is observed, so hydrogen migration may be occurring. ²⁰⁷

The carbyne complex $W(\equiv CMe)(CO)_2Cp$ reacts with $BH_3 \cdot THF$ to form $W_2[\mu\text{-MeCB}(H)Et](CO)_4Cp_2$, [41], $\delta^{11}B = -30.0$ (br). This compound contains a W—W bond bridged by an EtB—CMe group; and a hydride bridging B and W. A similar reaction of 9-borabicyclo[3.3.1]nonane with $W(\equiv C-p\text{-tolyl})(CO)_2Cp$ leads to $W[CH(BC_8H_{14})(p\text{-tolyl})](CO)_2Cp$, [42], $\delta^{11}B = -3.0$ (br), in which a BH unit has added to the carbyne ligand. ²⁰⁸

$$(\eta - C_5 H_5)(OC)_2 W$$

$$W(CO)_2 (\eta - C_5 H_5)$$

$$B \qquad OC \qquad CO$$

$$Me$$

$$CH \qquad B$$

$$Et \qquad [41] \qquad [42]$$

The carbon-rich metallocarborane CpCoBHC₄Ph₄, $\delta^{11}B = 17$, is formed from (Ph₄C₄)CoCpPPh₃. It is considered to have a pentagonal pyramidal geometry with an apical CpCo moiety; and four contiguous PhC units, plus a BH group in the base.²⁰⁹

B. B_{2,3,4} metalloboranes and metallocarboranes

The two boron atoms in $(CpCo)_4(\mu_3-H)_2B_2H_2$ give rise to a doublet at rather high frequency: 114 ppm (J(B-H)=170). This is consistent with the solid-state structure (Fig. 20), which discloses that two hydrides bridge Co_3 triangular faces. ²¹⁰ A 1:1 complex in which a $ZnCl_2$ moiety is bonded to $B_2H_4P(Me_3)_2$ by two B-H-Zn bonds been obtained. It has $\delta^{11}B=-43.1$ (J(P-B)=71), and thus has a static structure in solution. ²¹¹ The Ph₃PCuI, Ph₃PCuCl and Ni(CO)₂ complexes have similar ¹¹B chemical shifts. ²¹²

A dicobalt thiaborane complex $4,6-(CpCo)_2-3,5-B_2S_2H_2$, $\delta^{11}B=17.6$ (d, 169), has been prepared from Co vapour, C_5H_6 , B_5H_9 and COS or H_2S . The $Co_2B_2S_2$ cage can be viewed as a pentagonal bipyramid with one equatorial vertex missing. Cobalt atoms are at the apices; two boron atoms comprise an equatorial edge and the two sulphur atoms are not directly bonded.²¹³

The metalloboranes $(B_3H_8)OsH(CO)(PPh_3)_2$ and $(B_3H_8)IrH_2(PPh_3)_2$ have $\delta^{11}B = 1.0$ (B1), -39.5, -40.5 (B1,3); and 1.2 (B1), 39.4 (B2,3) respectively, this is consistent with the solid-state structures (Fig. 21). 214 (B₄H₈)Os(CO)(PPh₃)₂)₂ is considered to have a square pyramidal B₄Os framework with an apical (B1) boron atom based on the pattern of ^{11}B resonances: 8.9 (B1), -7.5, -14.2 (B3,5) and -34.4 B(4) ppm. 214 Structurally novel B₄ metalloboranes have been synthesized from B₄H₉. The structure of (B₄H₉)Ir(CO)(PhPMe₂)₂ (Fig. 22a) is rather like that of B₅H₁₁. In solution, NMR data reveal a site-exchange process that interconverts B(2, 5) and also B(3, 4); it is fast on the NMR timescale at 87 °C and 28.87 MHz but slow at 25 °C and 96.28 MHz. In the latter case ^{11}B

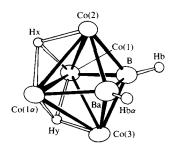


FIG. 20. $Co_4(BH)_2(\mu_3-H)_2$ core.

$$B(4)$$
 $B(1)$
 $O_{S(2)}$
 P
 O

FIG. 21. Structure of (B₃H₈)Os(H)(Ph₃P)₂.

chemical shifts are 3.4, -1.0 (B3, 4) and -14.5 (B5), which reflects the asymmetry found by X-ray crystallography. A more compact structure is thought to be adopted by $(B_4H_8)Rh(H)(PPh_3)_2$ (Fig. 22b), which has $\delta^{11}B = -4.2$ (B4), -12.4 (B3, 5) and -18.4 (B1). The corresponding shifts in $(B_4H_8)Ni(diphos)$ (diphos is $Ph_2PC_2H_4PPh_2$) are 10.2, -6.4 and -22.8 ppm. The structure of $(B_4H_8)Cu(PPh_3)_2$ is not established, but one possibility is shown in Fig. 22(c). At -20 °C the 96 MHz ¹¹B NMR spectrum contains resonances at 1.6 (1B), -6.5 (2B) and -55.8 (1B) ppm. Low-temperature $^1H-\{^{11}B\}$ spectra show that, unlike $K[B_4H_9]$, rapid bridge-terminal proton exchange does not occur.

The osmacarborane 1-(CO)₃Os-2,3-(Me₃Si)₂-2,3-B₄C₂H₄, formed from Os₃(CO)₁₂ and (Me₃Si)₂B₄C₂SnH₄ or (Me₃Si)₂B₄C₂H₆, has δ^{11} B = 15.8 (d, 168, B5), 2.7 (d, 156, B7) and 11.1 (d, 158, B4,6). ²¹⁶ The arene complex

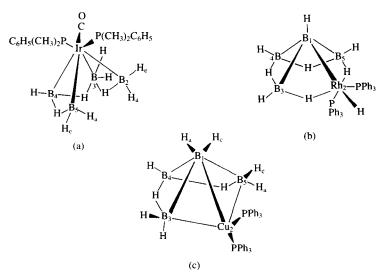


FIG. 22. Established structure of $(B_4H_8)Ir(CO)(PhPMe_2)_2$ (a) and proposed structure of $(B_4H_8)Rh(H)(Ph_3P)_2$ (b) and $(B_4H_9)Cu(Ph_3P)_2$ (c).

(MePh)Fe(Et₂-2,3-B₄C₂H₄) is formed from iron vapour, toluene and Et₂B₄C₂H₆. The ¹¹B NMR spectrum shows peaks at 8.1 (d, 147, 1B), 5.7 (d, 164, 1B) and 2.0 (d, 147, 2B) ppm, implying the presence of a mirror plane. The X-ray structure shows no such symmetry element and therefore, in solution, the carborane cage and toluene ring are likely to be rotating relative to one another. ²¹⁷

 ^{11}B NMR data for recently reported B_4C_2 metallocarboranes are collected in Table 27. These include $(C_8H_8)Ti^{218}$ and (olefin)Fe derivatives of $Et_2B_4C_2H_5.^{219,220}$ Copper-containing metallocarboranes, exemplified by $(B_4C_2H_7)Cu(PPh_3)_2,$ have been prepared, and it is considered that a $(Ph_3P)_2Cu$ unit replaces one of the bridging hydrogens in $2,3\text{-}B_4C_2H_8.^{221}$ Their ^{11}B spectra should be interpreted with care, since ^{31}P NMR studies indicate that, even at low temperatures, rapid ligand-exchange processes occur.

A class of hybrid metallocarboranes, which eludes the taxonomy used in this review, contains Co(III) and both borane and carborane ligands, as exemplified by $(Et_2B_4C_2H_4)Co(B_5H_{10})$. Structures and numbering schemes are shown in Fig. 23, and ¹¹B NMR data are presented in Table 28. Generally, the ¹¹B spectra are composites in that the borane ligand has only a minor effect on the shifts of the 2,3- $Et_2B_4C_2H_4$ group. Replacement of hydride by THF in B_9H_{13} leads to a large deshielding. ^{222,223}

TABLE 27

11B NMR data for B₄C₂ metallocarboranes.

Compound	$\delta^{11} \mathrm{B}$		
$(C_8H_8)Ti(Et_2B_4C_2H_4)$	22.1 (d, 125, B4, 6), 16.2 (d, 139, B3), -21.2 (d, 159, B1)		
$(C_8H_8)Ti(5-I-Et_2B_4C_2H_3)$	17.7(d, 124, B4, 6), 9.4(s, B5), -21.3(d, 167, B1)		
$(C_8H_8)Ti(4.5-I_2-Et_2B_4C_2H_2)$	17.2(d, 145, 1B), 10.8(s, 1B), 8.6(s, 1B),		
(55) () 2 2 4 2 2)	-20.6(d, 171, B1)		
$(C_8H_{10})Fe(Et_2B_4C_2H_4)$	10.7 (d, 141, 1B), 6.2 (d, 160, 1B), 3.1 (d, 149, 2B)		
$(C_6H_6)Fe(Et_2B_4C_2H_4)$	2.5(1B), 6.6(d, 140, 1B), 3.5(2B)		
$(C_{16}H_{18})Fe(Et_2B_4C_2H_4)$	12.5 (1B), 6.6 (1B), 3.2 (2B)		
$(C_8H_{10})Fe(Et_2B_3C_2H_5)$	3.5 (d, 130)		
$(C_6H_6)Fe(Et_2B_4C_2H_4)$	$12.5(1B)$, $6.6(d, 140, 1B)$, $3.5(2B)(C_6D_6)$;		
, - , , <u>-</u> , - ,	6.2 (d, 158, 1B), 4.6 (d, 158, 1B), 1.1 (d, 134, 2B) (acetone)		
$(Me_3Ph)Fe(Et_2B_4C_2H_4)$	6.9 (d, 134, 1B), 3.0 (d, 152, 1B), 1.7 (d, 146, 2B)		
$(Me_6C_6)Fe(Et_2B_4C_2H_4)$	8.7 (d, 135, 1B), 2.4 (d, 158, 2B), 0.8 (d, 179, 1B)		
$(Ph_3P)_2Cu(2,3-B_4C_2H_7)$	-0.4(3B), -50.5(d, 165, B1)		
$(Ph_3P)_2Cu(2,3-Me_2B_4C_2H_5)$	-3.5, -0.9, -46.5 (d, 191, B1)		
(diphos)Cu(2,3-B ₄ C ₂ H ₇)	2.4 (br, B4, 5), -5.7 (d, 180, B6), -56.4 (d, 173, B1)		
$(diphos)Cu(2,3-Me_2B_4C_2H_5)$	3.2, -0.2 (B4, 5), -7.8 (d, 133, B6), -46.8 (d, 145, B1)		

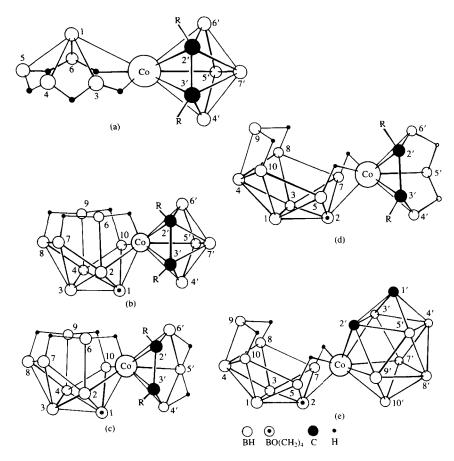


FIG. 23. (a) Proposed structure of $[2,3-\text{Et}_2C_2B_4H_4]-2-\text{Co}[B_5H_{10}]$; (b) established structure of $[2,3-\text{Et}_2C_2B_4H_4]-5-\text{Co}[B_9H_{12}-1-\text{O}(\text{CH}_2)_4]$; (c) established structure of $[2,3-\text{Et}_2C_2B_3H_5]-6-\text{Co}[B_9H_{12}-2-\text{O}(\text{CH}_2)_4]$; (d) proposed structure of $[2,3-\text{Et}_2C_2B_3H_5]-6-\text{Co}[B_9H_{12}-2-\text{O}(\text{CH}_2)_4]$; (e) established structure of $[1,2-\text{Et}_2C_2B_7H_7]-6-\text{Co}[B_9H_{12}-2-\text{O}(\text{CH}_2)_4]$.

Cobaltacarborane clusters containing the 4,6- or 4,5- $(Me_3Si)_2B_6C_2H_6$ ligand have been prepared from Co atoms, C_5H_6 , B_6H_{10} and $(Me_3Si)_2C_2$. One of the products, $5:1',2'-CpCo-2,3-(Me_3Si)_2B_4C_2H_3(B_2H_5)$ (cf. Table 28), is unusual in that it contains a B_2H_5 unit linked to B_5 in the B_4C_2 cage by means of a B_-B_- three-centre bond as shown in Fig. 24. Boron nuclei in this environment give rise to a poorly resolved signal at $-7.0 \, \text{ppm}$. Carbon-rich metalloboranes, e.g. $1-(Me_6C_6)Fe-4,5,7,8-Me_4B_3C_4H_3$, have been reported. In this example the cluster represents a 2n+4 skeletal electron system that adopts an *arachno* rather than a *nido* geometry.

TABLE 28

11B NMR data for hybrid metallocarboranes.

Compound	$\delta^{11}\mathrm{B}$
(Et ₂ B ₄ C ₂ H ₄)-2-Co(B ₅ H ₁₀)	34.1 (d, 112, B3, 6), 13.1 (d, 151, B4, 5, 5'), 5.5 (d, 139, B4', 6'), 2.2 (d, 161, B7'), -47.7 (d, 148, B1)
(Et ₂ B ₄ C ₂ H ₄)-5-Co(B ₉ H ₁₂ -1-THF)	36.6 (s, 1B), 20.6 (d, 110, 1B), 14.2 (d, 128, 1B), 7.5 (d, 139, 2B), 5.3 (d, 133, 2B), -0.4 (d, 105, 2B), -3.5 (d, 151, 1B), -11.5 (d, 128, 1B), -27.1 (d, 139, 1B), -39.2 (d, 151, 1B)
$(Et_2B_3C_2H_5)$ -5-Co $(B_9H_{12}$ -1-THF)	36.7 (s, 1B), 19.2 (d, 110, 1B), 7.0 (d, 128, 1B), 3.2 (2B), 1.4 (1B), -0.7 (1B), -2.2 (d, 116, 1B), -3.2 (1B), -12.8 (d, 103, 1B), -26.4 (d, 116, 1B), -38.8 (d, 140, 1B)
$(Et_2B_3C_2H_5)$ -6-Co- $(B_9H_{12}$ -2-THF)	10.7 (d, 124, 2B), 8.3 (d, 140, 2B), 4.4 (3B), 1.7 (1B), -3.1 (d, 130, 2B), -6.5 (d, 147, 1B), -38.4 (d, 154, 1B)
(Et ₂ B ₇ C ₂ H ₇)-6-Co(B ₉ H ₁₂ -2-THF)	78.8 (d, 165, 1B), 10.7 (d, 141, 1B), 8.5 (d, 126, 2B), 7.3 (1B), 3.0 (2B), -2.1 (d, 130, 2B), -3.9 (d, 124, 2B), -9.3 (d, 156, 1B), -18.8 (d, 137, 1B), -22.9 (d, 151, 1B), -24.8 (d, 140, 1B), -34.9 (d, 148, 1B)
$1-CpCo-4,6-(Me_3Si)_2B_6C_2H_6$	27.4 (d, 154, 1B), 10.6 (d, 138, 2B), -2.2 (d, 154, 2B), -10.3 (d, 154, 1B)
$1\text{-}CpCo\text{-}4,5\text{-}(Me_3Si)_2B_6C_2H_6$	72.0 (d, 144, 1B), 7.1 (d, 173, 1B), -1.6 (d, 183, 1B), -4.7 (d, 183, 1B), -13.4 (d, 164, 1B), -18.0 (d, 161, 1B)
5:1',2'-CpCo-2,3-(Me ₃ Si) ₂ B ₄ C ₂ H ₃ (B ₂ H ₅)	13.8 (d, 186, 2B), 4.5 (d, 164, 1B), -7.0 (m, 3B)
$1-(Me_6C_6)Fe-2,3-Me_2B_4C_2H_4$	9.8 (d, 134, 1B), 4.3 (d, 141, 2B), 3.7 (d, 128, 1B)
$1-(Me_6C_6)Fe-4,5,7,8-Me_4B_3C_4H_3$	14.8(d, 156, 1B), -12.2(d, 129, 2B)
1-(MePh)Fe-4,5,7,8-Me ₄ B ₃ C ₄ H ₃	16.1 (d, 156, 1B), -12.7 (d, 125, 2B)
2-(MePh)Fe-6,7,9,10-Me ₄ B ₅ C ₄ H ₅	14.1 (d, 156, 1B), 6.2 (d, 141, 1B), 1.6 (d, 166, 1B)

C. $B_{5,7,8}$ metalloboranes and metallocarboranes

Two metal-substituted pentaborane compounds have been prepared: $2\text{-CpFe}(CO)_2B_5H_8$ has $\delta^{11}B = 7.6$ (s, B2), -11.0 (d, 159, B3,5), -14.8 (d, 164, B4) and -48.6 (d, 169, B1); while the corresponding shifts for $2\text{-}(CO)_4CoB_5H_8$ are -4.5(s), -11.0 (d, 133), -14.5 (d, 171) and -49.0

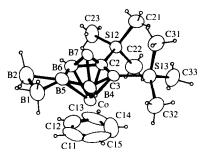


FIG. 24. ORTEP drawing of $5:1',2'-[1-(\eta-C_5H_5)Co-2,3-(Me_3Si)_2C_2B_4H_3][B_2H_5]$.

(d, 181) ppm. Metal substitution is seen to produce a considerable deshielding of B2. It is proposed that B2 substituents, which cause trans B4 to be shielded with respect to B2, 5 in B₅H₉, are associated with greater thermodynamic stability of the B2 substituted isomer relative to the B1 analogue. ²²⁶ The crystal structure of (B_5H_8) AuPPh₃, $\delta^{11}B =$ -12.4 (4B) and -46.7 (1B) (at 28.9 MHz) demonstrates a Ph₃PAu unit bridging a basal edge in the B₅ cluster so the molecule may be fluxional with gold migrating about all four B-B edges. 227 A similar structure probably obtains for (B₅H₈)Cu(diphos) in which B2, 3 (-11.3 ppm) and B4, 5 (-15.1 ppm) are resolved at 96 MHz; apical B1 has $\delta^{11}B = -47.5$. This compound, however, appears to have a static structure since two types of B—H—B protons are observed in the ¹H NMR spectrum. ²²⁸ The rhenaborane (B₅H₈)Re(CO)₃ has been obtained from B₅H₉, Re₂(CO)₁₀ and Pd/C. Its 11B NMR spectrum has been assigned by use of narrow band ¹H decoupling of the bridge protons, those between Re and B being recognized by their characteristic low-frequency shift, -8.3 ppm. Thus the shifts are 28.3 (d, 133, B3,6), 10.0 (d, 156, B4,5) and -54.1 (d, 147, B1) ppm. For comparison, ¹¹B shifts in the manganese analogue are 31.8, 11.3 and -53.7 ppm. Boron atoms adjacent to the metal show greater shift variations. 229

The novel heptaborane complex $Bu_4N[(CO)_4WB_7H_{12}]$ has been obtained from $W(CO)_3(CH_3CN)_3$ and $Bu_4N(B_9H_{12})$ in air. Its structure is shown in Fig. 25 and, as is often the case, the bridging hydrogens are not located in electron density maps but the presence of B—H—W and B—H—B bridging units and of *exo* and *endo* $B\underline{H}_2$ moieties at the 5, 6 and 8 positions can be deduced from the NMR data. Use of 2D NMR spectroscopy has led to a tentative assignment of the ¹¹B NMR spectrum: 20.2 (B4), 6 (B1, 6), -4.6 (B7), -7.9 (B5), -34.3 (B8) and -55.3 (B2) ppm. The anion is fluxional, and at >-30 °C the three kinds of protons on B8 interconvert. Note that in Fig. 25 the numbering scheme is different from that used in earlier publications as it adopts the latest recommended artifices. ²³⁰

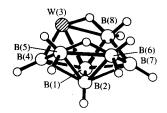


FIG. 25. Structure of (CO)₄WB₇H₁₂.

From $B_9H_{12}^-$ and trans- $(Me_3P)_2Ir(CO)Cl$ a number of B_8 iridaboranes have been obtained a plethora of B_8 iridaboranes, exemplified by $B_8H_{12}IrH(CO)(PMe_3)_2$. Non-equivalence of B5, 9, B6, 8 and B2, 3 in this compound is attributed to asymmetry associated with disposition of ligands about the six-coordinate iridium atom, cf. Fig. 26. ²³¹ Thermal elimination of hydrogen from B_8H_{12} -IrH(CO)(PMe₃)₂ (and related compounds) produces $B_8H_{11}Ir(CO)$ - $(PMe_3)_2$, a *nido* nine-vertex metalloborane (Fig. 26a). ²³² ¹¹B chemical-shift data are given in Table 29. Assignment of B5 follows from observation of its coupling to the -14.5 ppm B—H—Ir proton. Deprotonation of $B_8H_{12}IrH(CO)(PMe_3)_2$ and condensation with $Cl_2Pt(PMe_3)_2$ affords the mixed bimetalloborane $B_8H_{10}[IrH(CO)-(PMe_3)_2)][Pt(PMe_3)_2]$ (Fig. 26b). Its ¹¹B NMR parameters are similar to those of $B_8H_{10}[Pt(PMe_2Ph)_2]_2$. ²³³ Two gold-containing B_8 metalloboranes 4- $(S_2CNEt_2)AuB_8H_{12}$ and 6,9- $[(S_2CNEt_2)Au]_2B_8H_{10}$ have been reported. ²³⁴

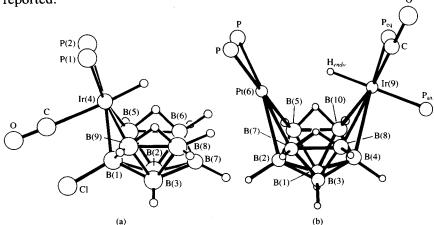


FIG. 26. (a) Schematic view of the molecular structure of [(HIrB₈H₁₁Cl)(CO)(PMe₃)₂], with cluster hydrogen atoms (evident from NMR spectroscopy) drawn in but with *P*-methyl groups omitted. (b) Representation of the proposed molecular structure of *arachno*-[(PMe₃)₂PtB₈H₁₀IrH(PMe₃)₂(CO)].

TABLE 29 11 B NMR data for B_8 metalloboranes.

Compound	δ^{11} B
$B_8H_{11}Ir(CO)(PMe_3)_2$	23.1, 8.8, -5.3, -13.6, -14.5, -15.3, -39.9 (B5), -52.5
$B_8H_{10}CIIr(CO)(PMe_3)_2$	22.6, 13.5, 1.1 (B—Cl), -3.5, -9.0, -14.2, -47.4
$B_8H_{11}Ir(PMe_3)_3$	26.9, 10.1, -3.4, -15.0, -16.2, -40.5, -49.8
$B_8H_{12}[IrH(CO)(PMe_3)_2]$ $[Pt(PMe_3)_2]$	25.2 (B2, J(Pt-B) = 280), 15.9 B(4), -4.0, -5.0 (B5, 7), -9.5, -12.3 (B8, 10), -27.1, -28.9 (B1, 3)
$B_8H_{12}IrH(CO)(PMe_3)_2$	17.7 (B7), 10.0 (B1), -13.3, -12.0 (B5, 9), -22.1, -26.9 (B6, 8), -32.8, -40.5 (B2, 3)
$B_8H_{11}CIIrH(CO)(PMe_3)_2$	18.1 (B7), 24.1 (B—Cl), -11.9 (B5, 9), -24.0 (B6, 8), -32.8 (B2, 3)
$B_8H_{12}IrH(PMe_3)_3$	18.3 (B7), 12.0 (B1), -12.7 (B5, 9), -24.3 (B6, 8), -35.7 (B2, 3)
$B_8H_{12}Pt(PPh_3)_2$	22.0(B1), 18.0(B7), 2.0B(5,9), -24.4(B6,8), -30.6(B2,3)
$B_8H_{12}Pd(PPh_3)_2$	22.5(B1), 15.4(B7), 5.5(B5, 9), -22.3(B6, 8), -29.4(B2, 3)
$B_8H_{10}[Pt(PMe_2Ph)_2]_2$	28.1 (B2, 4, J(Pt-B) = 300), 0.7 (B5, 7, 8, 10, J(Pt-B) = 280), -19.3 (B1, 3)
$B_8H_{10}PdPt(PMe_2Ph)_4$	32 (B2), 30 (B4), 8.5 (B5, 7), 2 (B8, 10), -1.6 (B1, 3)
4-(S ₂ CNEt ₂)AuB ₈ H ₁₂	18.8 (d, 130, B1), 9.5 (d, 130, B7), -15.9 (d, 130, B5, 6, 8, 9), -35.7 (d, 150, B2, 3)
6,9-[(S ₂ CNEt ₂)Au] ₂ B ₈ H ₁₀	34.5 (d, 120, B2, 4), 8.7 (d, 100, B5, 7, 8, 10), -16.9 (d, 130, B1, 3)
5,8-(CpCo) ₂ B ₈ H ₁₂	33.2 (d, 130, 2B), 26.1 (d, 102, 2B), 11.0 (d, 132, 2B), -11.3 (d, 134, 2B)
$2,4-(CpCo)_2B_8H_{12}$	21.5 (d, 128, 2B), 12.3 (d, 146, 2B), 3.5 (d, 140, 4B)

 $TABLE \ \ 30$ $$^{11}B\ NMR\ data\ for\ some\ arene\ metallocarboranes.}$

Compound (MHz, solvent)	Relative areas	δ^{11} B $(J(B-H))$
2,5,6-(η-C ₆ H ₆)RuC ₂ B ₇ H ₁₁ (115.8, C ₆ D ₆)	1:1:1:1:1:1:1	12.5 (142), 9.8 (140), 5.3, 3.8, -2.4 (135), -5.7 (146), -38.5 (149)
1,2,4-(η-C ₆ H ₆)RuC ₂ B ₈ H ₁₀ (115.8, CH ₂ Cl ₂)	1:1:1:1:1:1:1:1	62.5 (152), 11.7 (142), -0.8 (152), -2.0 (126), -14.0 (154), -20.7, -26.3 (146), -43.2 (149)
3,1,2-(η-C ₆ H ₆)OsC ₂ B ₉ H ₁₁ (70.6, CD ₃ CN)	1:1:2:2:2:1	-0.2 (142), -6.8 (138), -11.4 (127), -13.3 (144), -21.5 (151), -25.8 (164)
3,1,2-[endo-H- η^5 -(CH ₃) ₆ H]-CoC ₂ B ₉ H ₁₁ (115.8, CDCl ₃)	1:1:4:2:1	7.8 (139), -3.5 (142), -6.7 (136), -18.4 (154), -23.4 (167)

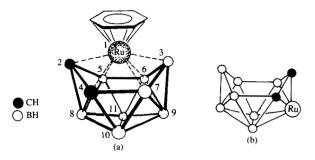


FIG. 27. (a) Proposed structure of 1,2,4- $(\eta$ -C₆H₆)RuC₂B₈H₁₀. (b) Heavy-atom skeleton of 1,2,4- (C_6H_6) RuB₇C₂H₁₁, with arene ring omitted.

Oxidative fusion of CpCoB₄H₇ yields (CpCo)₂B₈H₁₂. The 5,8 and 2,4, isomers are characterized by ¹¹B NMR; the 1,5 and 1,7 isomers have been isolated but are not differentiated. ²³⁵

Degradation of $(C_6H_6)RuB_9C_2H_{11}$ with ethanolic KOH produces 1,2,4- $(C_6H_6RuB_8C_2H_{10}$ and 2,5,6- $(C_6H_6)RuB_7C_2H_{11}$. The proposed structure of the former and the established structure of the latter are shown in Fig. 27, and the ¹¹B NMR data are given in Table 30. ²³⁶

A series of B_7C_2 metalloboranes has been synthesized by condensation of metal atoms (Fe, Co, Ni) with 2,6- $B_7C_2H_{11}$ and a hydrocarbon ligand. The ¹¹B data are collected in Table 31. A new isomer of $CpCoB_7C_2H_9$ has been isolated. A 1:2:2:2 pattern of ¹¹B resonances (at 64 MHz) is indicative of

TABLE 31 ^{11}B NMR data for B_7C_2 metalloboranes.

Compound	δ ¹¹ Β
2-CpCo-1,4-B ₇ C ₂ H ₉	27.5 (d, 110, 1B), 9.3 (d, 169, 2B), 5.6 (d, 173, 2B), -13.6 (d, 177, 2B)
4-CpCo-2,3-B ₇ C ₂ H ₁₃	13.1(d, 141), 0.2(d, 148), -7.9(d, 148), -10.1(d, 148),
2-(PhMe)Fe-6,9-B ₇ C ₂ H ₉	-12.3 (d, 133, 54), -18.7 (d, 134), -32.5 (d, 154) 81.3 (d, 148, 1B), -2.9 (d, 155, 1B), -10.6 (d, 146, 2B),
2-(PhMe)Fe-1,6-B ₇ C ₂ H ₉	-22.9 (d, 167, 1B), -30.2 (d, 148, 2B) 20.4 (d, 180), -3.9 (d, 143), -8.2 (d, 153), -19.8 (d, 153),
2-(Me ₃ Ph)Fe-1,6-B ₇ C ₂ H ₉	-26.2 (d, 107), -26.9 (d, 156), -33.7 (d, 153) 20.2 (d, 155), -4.5 (d, 118), -7.8 (d, 150), -19.5 (d, 131),
6-(Me ₃ Ph)Fe-9,10-B ₇ C ₂ H ₁₁	-25.1 (d, 168), -26.6 (d, 156), -33.1 (d, 171) 24.7 (d, 141), 10.2 (d, 150), 8.8 (d, 147), 4.3 (d, 137),
(Me ₄ C ₄ H)Ni-5,7,8-Me ₃ B ₇ C ₃ H ₇	$1.9 (\mathrm{m}), -16.4 (\mathrm{d}, 110), -17.6 (\mathrm{d}, 146)$ $8.1 (\mathrm{d}, 158), -1.2 (\mathrm{d}, 150), -5.0, -5.9 (\mathrm{d}, 184),$
	-7.3 (d, 161), -13.9 (d, 167), -15.3 (d, 159)

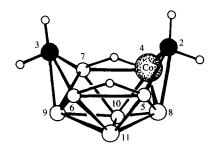
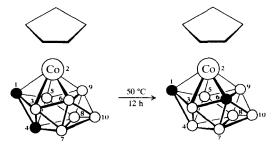



FIG. 28. Proposed structure of $(4-\eta-C_5H_5)$ Co-2,3-C₂B₇H₁₃. Terminal B—H hydrogens and the η^5 -C₅H₅ group are not shown.

a mirror plane of symmetry; and the absence of very high frequency peaks implies that one carbon atom occupies the four-coordinate position adjacent to cobalt; see Fig. 28 for the numbering scheme. The remaining carbon atom must therefore lie on the mirror plane, i.e. the compound contains either a 1,10- or 1,4-B₇C₂H₉ ligand. Because the former has been reported, it is concluded that 2-CpCo-1,4-B₇C₂H₉ has been obtained. It is not rigorously excluded that identification of the two isomers could be interchanged. A proposed structure of 4-CpCo-2,3-B₇C₂H₁₃ (Fig. 28) is advanced on the basis of a partial crystal structure and of a 2D ¹¹B NMR spectrum. In the latter the expected B7–B10 and B10–B11 cross peaks are not observed. This occasionally happens and serves as a reminder that caution must be used in the interpretation of 2D spectra. As an additional cautionary note, putative 2-CpCo-1,4-B₇C₂H₉ rearranges to the 2,1,6 isomer on standing at room temperature:

In some cases, it is possible that such isomerizations may occur during TLC separation or, worse, during crystal-growth procedures. The structure 2-(MePh)Fe-1,6-B₇C₂H₉ has been determined. Gross similarity of its ¹¹B chemical shifts to those of other (arene)Fe and CpCoB₇C₂ metallocarboranes supports the NMR identification of 2-CpCo-1,6-B₇C₂H₉. A quite unusual C₃ metallocarborane (Me₄C₄H)Ni-5,7,8-Me₃B₇C₃H₇ has

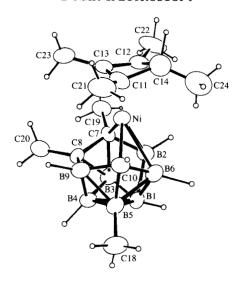
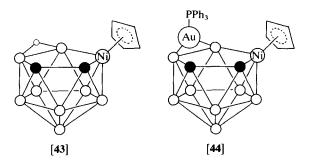



FIG. 29. ORTEP drawing of 5,7,8-Me₃-11,7,8,10- $[\eta^3$ -C₄Me₄H]NiC₃B₇H₇.

been obtained from Ni atoms, 2-butyne and 2,6-B₇C₂H₁₁. Its structure is shown in Fig. 29.²³⁷

The reaction of Li[Me₅Cp], CoCl₂ and $B_5H_8^-$ or $B_9H_{14}^-$ generates, like the $C_5H_5^-$ systems, an enormous number and variety of metalloboranes. ¹¹B NMR data for these compounds are collected in Table 32, even though it is organizationally untidy to lump them all together. Among these a 5,7-(Me₅CpCo)₂B₈H₁₂, a structural analogue of $B_{10}H_{14}$, exhibits a signal of unit area at 57.3 ppm that is assigned to B6, the unique boron atom between the two cobalt atoms. This assignment is supported by the presence of a 49.9 ppm singlet in the ¹¹B NMR spectrum of the 6-chloro derivative. Deshielding is less pronounced when B6 is adjacent to only one cobalt atom as in 5-Me₅CpCoB₉H₁₃. The structures of these materials, where they have been determined, are similar to those of the cyclopentadienyl counterparts. ^{238–240} B₈C metalloboranes have been prepared by metal-insertion reactions of 4-B₈CH₁₂ (see Table 32). ²⁴¹

Metallocarboranes have been prepared by successive replacement of B—H—B bridges in 5,6-B₈C₂H₁₂ with transition-metal fragments. Thus this carborane reacts with Cp₂Ni to form 7,8,9-CpNiB₈C₂H₁₁, [43], δ^{11} B = 19.3 (d, 142), 13.7 (d, 156), 3.4 (d, 156), -2.7 (br d, 151), -7.9 (dd, 149, 46), -17.5 (br d, 117), -19.7 (br d, 161 and -22.2 (Br d, 156). Subsequent gold insertion using Ph₃PAuMe yields (CpNi)(Ph₃PAu)-B₈C₂H₁₀, [44], δ^{11} B = 13.2 (1B), 7.0 (1B), 3.0 (1B), 1.1 (1B), -13.3 (1B), -16.4 (1B) and -20.8 (2B).

Platinum insertion into 5,6-B₈C₂H₁₂ produces (Et₃P)₂Pt(H)B₈C₂H₁₁, δ^{11} B = 8.9 (2B), -11.9 (2B), -26.8 (4B). On heating, this compound eliminates hydrogen and undergoes a rearrangement that transfers one Et₃P ligand from platinum to the adjacent B9 position, thus forming (Et₃P)Pt(H)(9-Et₃PB₈C₂H₉), δ^{11} B = 9.4(J(Pt-B) = 275), 8.9, 4.8 (J(Pt-B) = 261), -0.5, -14.2(J(Pt-B) = 387), -14.9(J(P-B) = 122), -21.8, -24.4 (J(Pt-B) = 326). The B9 resonance may be recognized by the ³¹P-¹¹B coupling. It is interesting that ¹⁹⁵Pt-¹¹B coupling is observed in one compound but not the other.²⁴³

TABLE 32 ¹¹B NMR data for metalloboranes.

Compound	$\delta^{11} \mathrm{B}$
Me ₅ CoCpB ₉ H ₁₃	20.5 (d, 107, 2B), 15.4 (d, 136, 2B), 5.2 (d, 143, 1B),
	-1.2(d, 143, 2B), -12.4(d, 139, 1B), -29.8(d, 148, 1B)
$(Me_5CpCo)_2B_8H_{12}$	20.8 (d, 116, 6B), 2.3 (d, 134, 2B)
$5,7-(Me_5CpCo)_2B_8H_{12}$	57.3 (1B), 24.4 (3B), 6.0 (2B), 7.4 (1B), -40.3 (d, 139, 1B)
6-Cl-5,7-(Me ₅ CpCo) ₂ B ₈ H ₁₁	49.9 (s, 1B), 23.1 (d, 124, 2B), 19.4 (d, 94, 1B),
	7.1(2B), -7.1(1B), -40.7(d, 141, 1B)
2-Me ₅ CpCoB ₄ H ₈	2.7(d, 137, 1B), -13.6(d, 135, 3B)
1,2-(Me ₅ CpCo) ₂ B ₄ H ₆	63.8 (d, 140, B4, 6), 17.4 (d, 127, B3, 5)
1,2,3-(Me ₅ CpCo) ₃ B ₄ H ₄	154.1 (B7), 91.0 (d, 140, B4, 5, 6)
$1,2-(Me_5CpCo)_2B_5H_7$	31.5 (d, 102, B4, 5), 26.3 (d, 89, B3, 6?), 17.5 (d, 122, B7)
(Me ₅ CpCo) ₃ B ₅ H ₉	62.5 (d, 137, B2, 4, 5), 23.8 (B6), 18.4 (d, 112, B7)
5,9-(Me ₅ CpCo) ₂ B ₈ H ₁₂	32.7 (d, 140), 30.3, 27.9, 24.6, 16.3 (d, 128), 8.6 (d, 93)
1-Me ₅ CpCoB ₄ H ₈	-2.9 (d. 158)
$1,2-(Me_5CpCo)_2B_5H_5$	135.6 (d, ca. 174, B7), 96.3 (d, 140, B5), 76.6 (d, 140, B4, 6), 2.9 (d, 128, B3)
6-CpNi-1-B ₈ CH ₉	76.5 (d, 1B), 2.0 (d, 2B), -1.4 (d, 1B), -17.0 (d, 2B), -19.1 (d, 2B)
10-CpNi-1-B ₈ CH ₉	2.4 (d, 160, 4B), 26.9 (d, 145, 4B)
Me ₄ N-[2-CpCo-1-B ₈ CH ₉]	34.2 (d, 148, 1B), 2.3 (d, 142, 1B), 0.4 (d, 136, 2B), -21.3 (d, 140, 2B), -25.5 (d, 136, 2B)

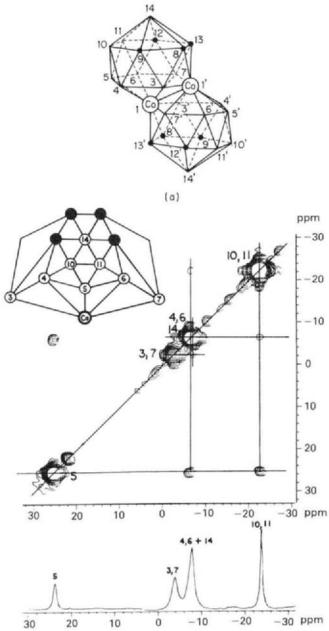


FIG. 30. (a) Proposed structure of $(Et_4B_8C_4H_8)_2Co_2$. (b) 115.8 MHz 2D ¹¹B NMR spectrum of $(Et_4B_8C_4H_8)_2Co_2$. The connectivity diagram is shown as an inset and the normal 1D spectrum is at the bottom.

Research in the area of tetracarbon carboranes has continued to produce novel boron compounds. ¹¹B NMR data for some of these are collected in Table 33. From Et₄B₈C₄H₈²⁻ and CoCl₂ is obtained, inter alia, (Et₄B₈C₄H₈)₂Co₂, which is considered to contain two B₈C₄Co cages edgefused so that a Co-Co vector forms the common edge (Fig. 30a). This structure is supported by the 2D ¹¹B NMR spectrum (see Fig. 30b) in that all of the expected off-diagonal peaks are found within the limits of resolution. Also formed in the same reaction is a paramagnetic isomer of (Et₄B₈C₄H₇)₂Co₂. When B₅H₈ is included in the reaction mixture, a diamagnetic isomer I of (Et₄B₈C₄H₇)₂Co₂ is obtained. Its ¹¹B NMR spectrum contains two singlets associated with a B-B bond between two nonequivalent boron cage positions; diamagnetism presumably arises from spin pairing between two cobalt atoms in close proximity. In solution rearrangement to the diamagnetic isomer II occurs. Also formed in these very complicated reactions are (Et₄B₈C₄H₇)₂CoH and (Et₄B₈C₄H₈)-CoH(Et₄B₄C₅H₆). The former exhibits in its ¹¹B NMR spectrum eight peaks of unit area, including one singlet. Iodine in acetone reacts with (Et₄B₈C₄H₈)₂Co₂ to yield a variety of products, including three hydroxylsubstituted derivatives. Also formed is (Et₄B₈C₄H₇)₂(Me₂CO)₂CoH, whose structure (Fig. 31) reveals terminal and bridging acetone ligands. 244

Condensation of $Et_4B_8C_4H_8^{2-}$, $Et_2B_4C_2H_5^{-}$ and $CoCl_2$ produces numerous metallocarboranes (see Table 33), whose structural schematics are depicted in Fig. 32. These include $(Et_4B_8C_4H_8)_2(THF)CoH$, whose ¹¹B NMR spectrum matches that of $(Et_4B_8C_4H_7)_2CoH$ except that the B(12, 13) and B(10, 13) cross-peaks in the 2D spectrum of the former are absent in that of the latter. The data are accommodated by the proposed structures (Fig. 33a,b). The two missing cross-peaks indicate the presence of

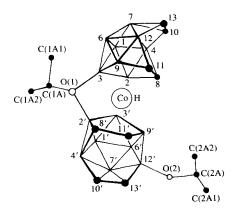


FIG. 31. Structure of (Et₄B₈C₄H₇)₂(Me₂CO)₂CoH.

TABLE~~33 $^{11}B~NMR~data~for~metallocarboranes~derived~from~<math display="inline">B_8C_4H_8^{2-}.$

Compound	$\delta^{11} \mathrm{B}$
$(\mathrm{Et_4B_8C_4H_8})_2\mathrm{Co_2}$	23.7 (d, 125, 1B), -3.9 (d, 65, 2B), -7.8 (d, 115, 3B), -23.9 (d, 136, 2B)
$(Et_4B_8C_4H_7)_2Co_2$ (I)	28.5 (s, 1B), 18.8 (d, 123, 1B), 6.9 (s, 1B), -3.8, -8.1, -7.7 (9B), -21.0 (d, 163, 1B), -25.1 (d, 138, 1B), -27.6 (d, 137, 1B), -30.2 (d, 146, 1B)
$(\mathrm{Et_4B_8C_4H_7)_2Co_2} \mathrm{(II)}$	19.8 (d, 124, 1B), 6.1 (s, 3B), -1.0 (d, 140, 1B), -4.5 (2B), -13.2 (d, 131, 2B), -15.4 (d, 146, 1B), -18.1 (d, 136, 1B), -23.3 (1B), -24.5 (d, 143, 2B), -28.9 (d, 143, 2B)
(Et ₄ B ₈ C ₄ H ₇) ₂ (Me ₂ CO) ₂ CoH	27.1 (s, 1B), 16.2 (d, 132, 1B), 6.6 (s, 1B), 3.8 (s, 1B), -4.1 (d, 172, 2B), -6.5 (d, 139, 1B), -7.7 (d, 126, 1B), -8.7 (d, 145, 1B), -12.2 (d, 112, 1B), -13.0 (d, 129, 1B), -14.3 (d, 132, 1B), -20.3 (d, 136, 1B), -26.0 (d, 144, 1B), -28.1 (d, 129, 1B), -29.1 (d, 104, 1B)
$(Et_4B_8C_4H_7)_2(OH)Co$ (I)	28.6 (s, 1B), 18.9 (s, 1B), -4.1 (d, 137), -11.2, -15.4, -16.8, -19.8 (2B), -28.3 (d, 141, 3B)
$(Et_4B_8C_4H_7)_2(OH)Co$ (II)	12.9 (s, 1B), 5.5 (s, 1B), 1.7 (d, 146, 1B), -3.0 (d, 130, 1B), -14.7 (d, 149, 2B),
$(\mathrm{Et_4B_8C_4H_7})_2\mathrm{CoH} (\mathrm{I})$	-16.5 (d, 186, 2B), -17.9 (d, 150, 2B) 35.6 (s, 2B), 9.3 (d, 160, 2B), 1.8 (d, 169, 2B), -7.0 (d, 146, 2B), -8.3 (d, 163, 2B), -15.7 (d, 159, 2B), -26.1 (d, 159, 2B), -43.7 (d, 148, 2B)
$(\mathrm{Et_4B_8C_4H_8})\mathrm{Co}(\mathrm{Et_4B_4C_4H_6})$	32.7 (d, 145, 2B), -10.3 (6B), -23.7 (d, 145, 2B), -25.9 (d, 133, 2B)
$(Et_4B_8C_4H_8)_2(THF)CoH$	35.6 (s), 8.9 (d, 126), 1.9 (d, 168), -6.7 (d, 149), 8.5, -15.6 (d, 152), -25.5 (d, 159), -43.7 (d, 149)
(Et ₄ B ₈ C ₄ H ₇) ₂ CoH (second isomer)	33.6(s, 1B), 19.8 (d, 107, 1B), 8.8 (d, 144, 1B), 1.7 (d, 165, 1B), -6.9 (d, 150), -8.8 (7B), -15.7 (d, 157, 1B), -23.6, -25.4 (3B), -43.9 (d, 147, 1B)
(Et ₄ B ₈ C ₄ H ₇ .THF)Co(Et ₂ B ₄ C ₂ H ₄)	11.8 (1B), 9.2 (s, 2B), 6.1 (2B), 1.4 (d, 131, 1B), -3.8 (d, 126, 1B), -12.0 (1B), -17.8 (d, 130, 1B), -23.1 (d, 163, 1B), -24.5 (d, 137, 1B), -32.3 (d, 128, 1B)
$\begin{array}{l} (Et_4B_8C_4H_6.THF)Co(Et_2B_4C_2H_3)\\ (Et_4B_8C_4H_8.THF)Fe(Et_2B_4C_2H_4)\\ (paramagnetic) \end{array}$	-2.9, -7.6 (9B), -22.5 (d, 133, 3B) 63.0, ca3, -194.3

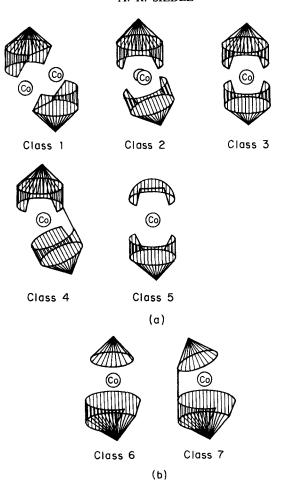


FIG. 32. (a) Schematic drawings of geometrical modes (established or proposed) exhibited by $(C_4B_8)_2C_0$, $(C_4B_8)_2C_0$, and $(C_4B_8)C_0(C_4B_4)$ complexes. Connections between cobalt and ligands are omitted for clarity, an artistic device having no bonding significance. Ligands represented are $Et_4C_4B_8H_8^2$ or $(Et_4C_4B_8H_7)H_2^{4-}$, except for the small ligand in class 5, which is $Et_4C_4B_4H_6^{2-}$. (b) Schematic representations of structure types of $(C_2B_4)C_0(C_4B_8)$ complexes. The small ligand is $Et_2C_2B_4H_4^{2-}$; the large ligand is $Et_4C_4B_8H_8^{2-}$.

B—H—B bridges between B10–B13 and B10′–B13′; these may undergo a tautomeric shift to the B12–B13 and B12′–B13′ edges. Because the shifts of B8 in both compounds are the same, the THF substituent may be mobile as well. The mixed cage compound [Et₄B₈C₄H₇(THF)]Co(Et₂B₄C₂H₄) has been crystallographically characterized, and the cluster geometry is shown schematically in Fig. 33(c); the THF is attached to B11. 245

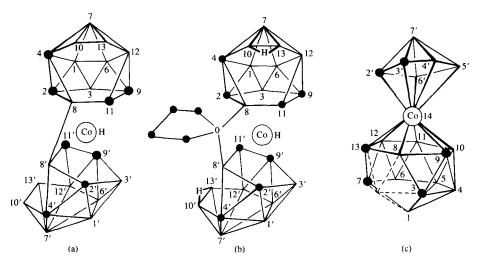


FIG. 33. (a, b) Proposed structures of $(Et_4B_8C_4H_7)_2CoH$ (a) and $(Et_4B_8C_4H_8)_2(THF)CoH$ (b). Skeletal and THF carbon atoms are shown as solid circles. (c) Cage geometry of $(Et_4B_8C_4H_7\cdot THF)Co(Et_2B_4C_2H_4)$ depicting the 13-vertex unit as a fragment of a bicapped hexagonal antiprism. The missing vertex (2) is shown by dashed lines. Framework carbon atoms are shown as solid circles.

D. Bo metalloboranes and metallocarboranes

An extensive series of copper-containing metalloboranes of the type $(B_9H_{13}X)Cu(PPh_3)_2$ has been obtained by metathetical reactions of $B_9H_{13}X^-$ with $(PPh_3)_2CuBH_4$. The numbering scheme is shown in Fig. 34(a), and 115.5 MHz ¹¹B NMR data are collected in Table 34. The compounds in which X = H, NCSe, NCS and NCBPh₃ are fluxional at room temperature, so that the borane ligand contains a plane of symmetry. A structure is proposed in which two of the three *endo*-hydrogen atoms at B4, 6, 8 participate in B—H—Cu bridging, as shown in Fig. 34(b). The resonances due to B7, B6, 8 and B4 are singlets; broadening is attributed to quadrupolar relaxation induced by the $(Ph_3P)_2Cu$ moiety. The compounds in which $X = NCBH_3$ and $NCBH_2NCBH_3$ are viewed as static $(Ph_3P)_2CuBH_4$ complexes (see Fig. 34).

Metalloboranes of the B₉Re class, e.g. $(B_9H_{13})ReH(PMe_2Ph)_3$, have been obtained from ReCl₃ $(PMe_2Ph)_3$ and B₉H₁₄ (cf. Table 35). The HRe $(PMe_2Ph)_3$ unit exhibits a dual pseudo-rotational fluxionality that leads to time-averaged structures of effective C_s mirror-plane symmetry. The ¹¹B resonances are so broadened by efficient quadrupolar relaxation that low-temperature spectra do not resolve enantiomeric forms. Interestingly, the slope of the line relating $\delta^{11}B$ and $\delta^{1}H$ is about 12.5 rather than the more frequently observed value of 16. This may reflect an anomalous shielding of B2,

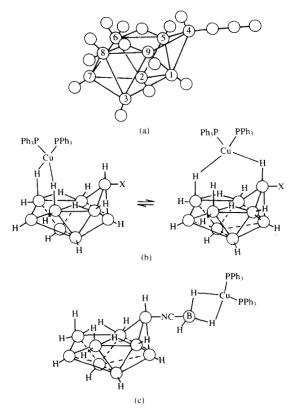


FIG. 34. (a) Numbering scheme for $B_9H_{13}X^-$. (b) Dynamic structure of $B_9H_{13}Cu(Ph_3P)_2$. (c) Static structure of $B_9H_{13}NCBH_3Cu(Ph_3P)_2$.

which is adjacent to rhenium.²⁴⁷ The osmium- and tungsten-containing metalloboranes (B₉H₁₃)WH₂(PMe₂Ph)₃ and (B₉H₁₃)Os(PMe₂Ph)₃ have recently been reported (see Table 35). A comparison of the ¹¹B NMR chemical shifts of these compounds, together with those of (B₉H₁₃)-ReH(PMe₂)₃, (B₉H₁₃)Ru(PMe₂)₃, (B₉H₁₃)IrH(PMe₃)₃ and B₁₀H₁₄, is shown in Fig. 35. The shifts of B1, 3, 4, 8, distant from the metal centre, vary by only 5 ppm and B9 by 7 ppm. B2 in the WB₉ and B5, 7 in the Rh and Os metalloboranes are significantly more deshielded (10–14 ppm).²⁴⁸ The ¹¹B NMR spectrum of (B₉H₁₃)RhMe₅Cp, whose structure is shown in Fig. 36, has been assigned with the use of 2D techniques: 19.4 (dd, 149, 54, B5, 7), 12.7 (d, 138, B1, 3), 4.7 (d, 158, B9), -0.9 (d, 152, B8, 10), -10.8 (d, 141, B2) and -30.6 (d, 150, B4) ppm. For comparison, ¹¹B chemical shifts in the analogous (B₉H₁₃)CoMe₅Cp are 20.5, 15.4, 5.2, -1.2, -12.4 and -29.8 ppm.²⁴⁹

TABLE~34 Comparison of the correlated ^{11}B and $^{1}H-\{^{11}B,~continuous~wave\}$ spectra of the $[B_9H_{13}X]^-$ anions and the $Cu(PPh_3)_2(B_9H_{13}X)$ complexes in $CDCl_3$.

			Free	e anion	Copper complex		
Comp	oound anion	Atom position	δ^{11} B	δ^1 H	δ^{11} B	δ^1 H	
(1)	[B ₉ H ₁₄] ⁻	5,7,9	-6.8	2.10	-5.3	2.70	
` ' '		4, 6, 8	-19.2	1.60	-22.5	1.26	
		1,2,3	-22.4	1.10	-25.4	1.62	
		bridge		-1.50(5)		-1.61(3)	
		PPh ₃		. ,		7.4(30)	
		CuHB				0.42(2)	
(2)	[B ₉ H ₁₃ (NCS)] ⁻	7	14.8	3.68	15.46	3.91	
		1	4.2	2.85	4.49	3.0	
		5,9	-16.4	1.53	-15.6	1.68	
		6,8	-18.0	1.86	-19.1	1.99	
				-0.41			
		4	-22.0	0.60	-24	_	
		2,3	-38.3	0.25	-38.4	0.4	
		bridge		-1.4(5)		-1.3(3)	
		PPh ₃				7.4(30)	
(3)	[B ₉ H ₁₃ (NCSe)] ⁻	7	15.8	3.73	16.7	3.9	
	- · · · · · · · · · · · · · · · · · · ·	1	5.2	2.86	5.21	3.05	
		5,9	-15.6	1.58	-15.14	1.73	
		6,8	-17.8	1.89	-19.4	1.91	
		4	-22.7	_	-25.7	_	
		2,3	-37.8	0.22	-38.4	0.38	
		bridge		-1.42(5)		-1.3(3)	
		PPh ₃				7.4(30)	
(4)	$[B_9H_{13}(NCBPh_3)]^-$	7	16.6		16.93	4.0	
		1	5.2		5.20	3.16	
		NCBPh ₃	-10.7		-10.67		
		5,9	14.9		-15.11	1.83	
		6,8	-19.5		-19.40	2.0	
		4	-25.7		-26.03		
		2,3	-38.4		-38.41	0.5	
(5)	$[B_9H_{13}(NCBH_3)]^-$	7	16.2		17.5	3.97	
		1	4.8		4.9	2.97	
		5,9	-15.5		-14.8	1.70	
		bridge				-3.55(2)	
		6,8	-19.4		-20.0		
		exo				1.94	
		endo	25.5		26.6	-0.25	
		4	-25.5		-26.6	0.24	
		2,3	-38.6		-38.6	0.41	
		BH_3	-43.0		-36.5	1.73	

TABLE 34 (cont.)

Comparison of the correlated ¹¹B and ¹H-{¹¹B, continuous wave} spectra of the {B₉H₁₃X}⁻ anions and the Cu(PPh₃)₂(B₉H₁₃X) complexes in CDCl₃.

		Free anion		Copper complex	
Compound anion	Atom position	δ^{11} B	δ^1 H	δ^{11} B	δ^1 H
(6) [B ₉ H ₁₃ (NCBH ₂ NCBH ₃)] ⁻	7 1 5,9 bridge 6,8 exo endo 4 BH ₂ 2,3 BH ₃	17.1 5.07 -14.7 -20.2 -27.3 -38.6 -43.3	3.9 3.03 1.79 -3.53 (2) 1.88 -0.27 0.43 2.09 0.37 0.57	17.97 5.3 -14.4 -20.2 -26.9 -38.44 -37	4.08 3.21 1.99 -3.37 (2) 2.07 -0.12 0.55 2.07 0.59 1.83

Metalloboranes of the B₉Fe class have been prepared from iron atoms, B₁₀H₁₄ and mesitylene. ¹¹B chemical-shift data are given in Table 36. The very high-frequency ¹¹B resonance of (mesitylene)FeB₉H₉ is characteristic of low-coordination-number boron atoms that are bonded to a transition metal (Fig. 37). ²⁵⁰ The nickelaborane 2,4-Cl₂-B₉H₇Ni(PMe₂Ph)₂ features a bicapped Archimedian square-antiprismatic geometry with nickel at the apical, i.e. 1, position. ²⁵¹

Archival ¹¹B NMR spectra have been obtained for a wide variety of transition-metal complexes of various isomers of the $B_9C_2H_{11}^{2-}$ ligand, and the chemical shifts are summarized in Table 37. ¹¹B NMR data have been reported for a series of tertiary-phosphine complexes of $B_9C_2H_{11}$ metallocarboranes containing rhodium and ruthenium; these compounds are of interest on account of the catalytic activity exhibited by the metal centres. Some of the spectra are not well resolved, e.g. 3-Ph₃P-3,1,2-RhB₉C₂H₁₁, as is often the case when bulky phosphine ligands are present. An X-ray study of $(7,9-B_9C_2H_{11})$ RhCl(PPh₃) has shown that, notwith-standing the formalisms of electron counting, there is negligible movement of the metal from the B_3C_2 bonding face of the carborane ligand. The electron deficiency is thus proposed to be metal-centered. ²⁵²⁻²⁵⁵ The C-aryliridacarborane [(Ph₃P)₂IrH]-8-Ph-1,8-B₉C₂H₁₀, δ ¹¹B = -0.1, 6.3, 9.4 and 20.5, rearranges under relatively mild conditions, at 110 °C, to form an isomer having the phenyl group on the lower equatorial belt. ²⁵⁶

 $TABLE \ 35$ $^{11}B \ NMR \ data \ for \ B_9 \ metalloboranes.$

	$\delta^{11}\mathrm{B}$						
Compound	B1,3	B5,7	В9	B8, 10	B2	B4	
(B ₉ H ₁₃)ReH(PMe ₂ Ph) ₃	10.2	12.2	5.5	-1.5	-29.8	-29	
(9-EtOB ₉ H ₁₂)ReH(PMe ₂ Ph) ₃	3.8	14.8	23.0	-14.9	33.8	-26	
(8-EtOB ₉ H ₁₂)ReH(PMe ₂ Ph) ₃	13.9, 1.8	20.4, 1.7	-6.2	23.0, -16.3	-32.2	-31	
[2-(PMe ₂ Ph)B ₉ H ₁₂]ReHCl(PMe ₂ Ph) ₂	5.9	12.7	0.7	-0.7	-41.8	-32	
(2-ClB ₉ H ₁₂)ReH(PMe ₂ Ph) ₃	11.2	10.4	0.2	2.1	-15.8	-32	
$(B_9H_{13})WH_2(PMe_2Ph)_3$	7.2	12.3	2.5	-3.0	-23.1	-33	
$(B_9H_{13})Os(PMe_2Ph)_3$	11.4	8.8	3.0	-1.6	-29.2	-31	

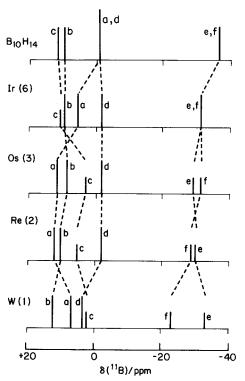


FIG. 35. Stick diagram of the ^{11}B NMR positions for $[(PMe_2Ph)_3H_2WB_9H_{13}]$ (1), $[(PMe_2Ph)_3HReB_9H_{13}]$ (2), $[(PMe_2Ph)_3OsB_9H_{13}]$ (3), $[(PMe_3)_2HIrB_9H_{13}]$ (6) and $B_{10}H_{14}$. Mean resonance positions have been plotted for the asymmetric species $[(PMe_3)_2HIrB_9H_{13}]$ (6), and it should also be noted that the $^{11}B(2)$ and $^{11}B(4)$ resonances are accidentally coincident for this compound. Assignments are $^{11}B(5,7)$ a, $^{11}B(1,3)$ b, $^{11}B(9)$ c, $^{11}B(8,10)$ d, $^{11}B(2)$ e, and $^{11}B(4)$ f. Resonances e and f are assigned on the basis of ^{11}H -shielding behaviour.

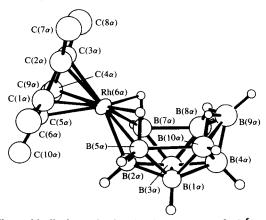


FIG. 36. Crystallographically determined molecular structure of [6-(η⁵-C₅Me₅)RhB₉H₁₃].

 $TABLE \ \, 36$ $$^{11}B$ NMR data for B_9Fe-type metalloboranes.$

Compound	$\delta^{11}\mathrm{B}$	
(Me ₃ Ph)FeB ₉ H ₁₃	30.1 (d, 144, 1B), 22.5 (d, 126, 1B), 12.6 (d, 126, 1B),	
	4.3(d, 133, 2B), 0.1(d, 155, 1B), -3.0(d, 133, 1B),	
	-18.6 (d, 150, 1B), -37.8 (d, 162, 1B)	
(Me ₃ Ph)FeB ₉ H ₉	106.5 (d, 178, 3B), 27.7 (d, 144, 3B), -11.4 (d, 148, 3B)	
$2,4-\text{Cl}_2-\text{B}_9\text{H}_7\text{Ni}(\text{PMe}_2\text{Ph})_2$	47.4 (s, B2, 4), 26.6 (d, 140, B3, 5), 3.8 (d, 150, B6, 7, 8, 9), 88.6 (d, 130, B10)	

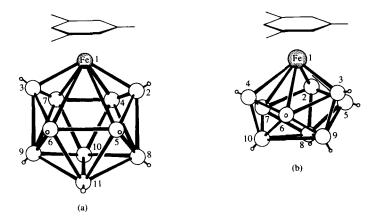


Fig. 37. Proposed structures for $1-[\eta^6C_6Me_3H_3]FeB_{10}H_{10}$ (a) and $1-[\eta^6-C_6Me_3H_3]-FeB_9H_9$ (b).

TABLE 37 ^{11}B NMR data for B_9C_2 metallocarboranes.

Compound	$\delta^{11} \mathrm{B}$
$(7,9-B_9C_2H_{11})RhH(PhPMe_2)_2$	-1.8(1B), -4.4(1B), -8.5(2B), -10.0(2B), -21.3(3B)
$(7,9-B_9C_2H_{11})RhCl(PhPMe_2)_2$	6.9(1B), -2.6(1B), -3.7(2B), -6.0(2B), -18.1(3B)
$(7,9-B_9C_2H_{11})RhCl(PPh_3)_2$	11.9 (1B), 8.0 (2B), 4.6 (1B), -7.8 (1B), -9.1 (1B), -13.6 (2B), -17.2 (1B)
[(CH ₃ CN) ₂ (Ph ₃ P)-3,1,2- RhB ₉ C ₂ H ₁₁]HSO ₄	-23.4, -7.6, -3.9, 11.0, 13.1

TABLE 37 (cont.)

^{11}B NMR data for B_9C_2 metallocarboranes.

Compound	$\delta^{11}\mathrm{B}$
3-Ph ₃ P-3,1,2-RhB ₉ C ₂ H ₁₁	-25.7, -9.2, -3.1, 11.8
$[Ph_3P(\mu-CN)-3,1,2-B_9C_2H_{11}]_4$	8.5, -1.6, -5.3, -8.8
$3,3-(PhPMe_2)_2-3-NO_3-3,1,2-$	-19.6, -15.5, -2.4, 8.0
$RhB_9C_2H_{11}$	
[Ph ₃ PH][(Ph ₃ P)Br ₂ -3,1,2-	16.3(2B), 3.8(1B), 1.4(3B), -3.8(2B),
$RhB_9C_2H_{11}$	17.1 (1B)
[Bu ₄ N][(Ph ₃ P)I ₂ -3,1,2-	8.1(1B), $5.9(2B)$, $-4.9(2B)$, $-7.0(2B)$,
$RhB_9C_2H_{11}$	-13.8(1B), -24.9(1B)
[K(18-crown-6]-	-22.0(d, 148, 3B), -12.6(d, 140, 2B),
$[(CO)_2Ru(H)B_9C_2H_{11}]$	-9.5 (d, 127, 2B), -6.8 (d, 129, 1B),
	-4.9(d, 142, 1B)
$[K(18\text{-crown-6})]_2$	-21.0 (d, 148, 3B), -10.8 (d, 139, 2B),
$[(CO)(\mu-CO)RuB_9C_2H_{11}$	-8.8 (d, 139, 3B), -0.8 (d, 132, 1B)
$(Me_4N)[(CO)_2Ru(COMe)B_9C_2H_{11}]$	-21.3 (d, 148, 3B), -11.6 (d, 140, 2B),
	-7.9 (d, 137, 3B), -4.8 (d, 145, 1B)
$(Me_4N)[(CO)_2Ru(CO_2CF_3)B_9C_2H_{11}]$	-21.5 (d, 155, 2B), -17.6 (d, 172, 1B),
	-10.1 (d, 151, 1B), -7.8 (d, 143, 4B),
	1.4(d, 135, 1B)
$3,3-(Ph_3P)_2Ni(3,1,2-B_9C_2H_{11})$	-19.4(2B), -12.7(2B), -9.1(5B)
$3,3-(Et_3P)_2Ni(3,1,2-B_9C_2H_{11})$	-19.8(2B), $-13.1(2B)$, $-9.1(4B)$,
·	-4.7(1B)
$3,3-(PhPMe_2)_2Ni(3,1,2-B_9C_2H_{11})$	-19.0(2B), $-12.3(2B)$, $-8.7(3B)$, $-6.3(1B)$,
	-2.8(1B)
$2,2-(Ph_3P)_2Ni(2,1,7-B_9C_2H_{11})$	-19.8(3B), $-15.7(1B)$, $-10.7(4B)$, $-2.8(1B)$
$2,2-(Ph_3P)_2Ni(2,1,12-B_9C_2H_{11})$	-20.0(4B), -14.9(2B), -10.1(2B), -8.1(1B)
$3.8-(Ph_3P)_2NiH(3.1.2-B_9C_2H_{11})$	-23(7B), -15(2B)
3-Ph ₃ P-3-(CO)Ni(3,1,2-B ₉ C ₂ H ₁₁)	-22.6(3B), -13.5(2B), -10.3(2B), -6.3(2B)
$3-Cl-3,8-(Ph_3P)_2Ni(3,1,2-B_9C_2H_{11})$	-19.8, -10.7, -2.0 (d, 128, 1B)
$[3-\mu-(CO)-8-Ph_3PNi(3,1,2-B_9C_2H_{11})]$	-19.1(2B), -15.3(4B), -10.7(2B),
	-7.0(d, 132, 1B)
$(MePh)Fe(2,4-Me_2B_9C_2H_9)$	-1.1(1B), $-4.1(2B)$, $-7.4(1B)$, $-12.9(2B)$,
	-15.2(1B), -16.3(2B)
$(C_{10}H_8)Fe(2,4-Me_2B_9C_2H_{11})$	-2.1(1B), $-3.6(2B)$, $-6.0(1B)$, $-13.9(2B)$,
	-16.9 (3B)
RuW(μ-CC ₆ H ₄ Me)(CO) ₃ Cp-	19.5(s, 1B), -7.6(br, 8B)
(Me2B9H11)	
$RuW[\mu-\sigma-CH(C_6H_4Me)-$	65.4 (s, 1B, B—C—Ru), 20.3 (1B), 6.0 (1B),
$(CO)_3Cp(Me_2B_9C_2H_{11})$	-4.5(4B), -14.8(2B)

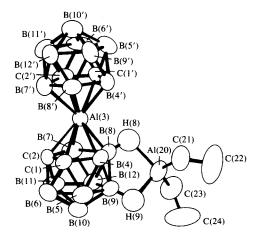


FIG. 38. Structure of $[8,9-Et_2Al(\mu-H)_2-1,2-B_9C_2H_9]Al(1,2-B_9C_2H_{11})$.

Bis(phosphine)-substituted $B_9C_2H_{11}$ nickel complexes rearrange on heating so that the phophine migrates to a terminal boron position on the open face of the carborane ligand, and, in such compounds $J(P-B) \approx 130\,\mathrm{Hz}.^{257}$ The reaction of $(C_8H_{12})\mathrm{Fe}(C_5H_5)$ with 2,3-Me₂B₉C₂H₉ in the presence of arenes provides a versatile route to compounds of the type (arene)-Fe(Me₂B₉C₂H₉). The ¹¹B NMR spectrum of the indenyl complex $(C_9H_7)\mathrm{Co}(1,2\text{-B}_9\mathrm{C}_2\mathrm{H}_{11})$ shows peaks at 7.6 (1B), 1.7 (1B), -3.6 (2B), -4.0 (2B), -15.9 (2B) and -22.4 (1B). Interestingly, it exists in two different crystal forms.

The compound $[8,9\text{-Et}_2\text{Al}(\mu\text{-H})_2\text{-}1,2\text{-B}_9\text{C}_2\text{H}_9]\text{Al}(1,2\text{-B}_9\text{C}_2\text{H}_{11})$, prepared by the catalytic action of CO on EtAlB₉C₂H₁₁, may, in a formal sense, be regarded as a zwitterion containing a $[(B_9\text{C}_2\text{H}_{11})_2\text{Al}]^-$ sandwich bonded through two B—H units at B8,9 to an Et₂Al⁺] ion (Fig. 38). It has $\delta^{11}\text{B} = -12.3$ (d, 3B), -16.8 (d, 4B), -21.6 (d, 1B), -31.7 (d, 1B) in C₆D₆. The lowest frequency resonance, which does not exhibit B—H coupling, is assigned to the B8, 9 bridge sites.

The novel silicon sandwich compound $(1,2-B_9C_2H_{11})_2$ Si has $\delta^{11}B = -8.5$ (2B), -11.2 (1B), -12.9 (4B), -20.4 (1B) and -24.7 (1B).

Reactions of $[M(CO)_2(CH_3CN)(\eta^5-C_9H_7)]BF_4$ (M = Mo, W) and PPN[W(\equiv CC₆H₄Me)(CO)₂(7,8-B₉R₂C₂H₉)] (R = H, Me) yield the bimetallic carborane compounds $MW(\mu$ -CC₆H₄Me)(CO)₃(η^5 -C₉H₇)(7,8-B₉R₂C₂H₉). These materials feature a B—H—M bond (see Fig. 39a), which is manifested in their ¹¹B NMR spectra by a peak at 9.2–16.2 ppm (1B) that is quite distinct from the other, poorly resolved B—H peaks at -8.3 to -12.6 ppm (8B); $J(B-H) \approx 82$ Hz is less than the usual value

FIG. 39. Schematic structures of $MW(\mu-CC_6H_4Me)(CO)_3(C_9H_7)(B_9R_2C_2H_9)$ (a), $PPN[MoW(\mu-CHC_6H_4Me)(CO)_3(C_9H_7)(B_9C_2Me_2H_9)]$, (b) and $RuW(CHC_6H_4Me)-(B_9C_2Me_2H_8)(CO)_3(Me_3P)Cp$ (c).

of approx. 130 Hz for two-centre B—H units, which further indicates participation of B— \underline{H} in agnostic bonding. This interaction is maintained in the 7,9-B₉R₂C₂H₉ isomers, which are formed on heating, and in the hydride-addition product PPN[MoW(μ -CHC₆H₄Me)(CO)₃(η ⁵-C₉H₇)(7,8-B₉R₂C₂H₉)] (Fig. 39b). Replacement by PMe₃ of one CO molecule on

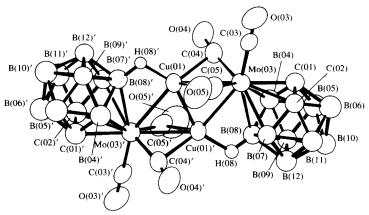


FIG. 40. Structure of $[Mo_2Cu_2(\mu-CO)_4(CO)_2(\mu-H)_2(C_2B_9H_{10})_2]^{2-1}$

the tungsten atom bonded to the carborane cage preserves the B—H—M bond; but it is ruptured upon like displacement of CO at the distal metal atom. ²⁶² Structurally analogous compounds such as RuW(μ -CC₆H₄Me)-(CO)₃Cp(B₉Me₂C₂H₉) have also been prepared. These too exhibit high frequency (approx. 19 ppm) signals for the B—H—Ru group. Treatment with base removes the bridging proton and generates [RuW(μ -CC₆H₄Me)-(CO)₃(B₉Me₂C₂H₉]⁻, in which the unique boron atom, now directly bonded to Ru, appears at 45.9 ppm. Reaction of the alkylidyne complex with PMe₃ yields RuW[μ , σ , η -CH(C₆H₄Me)(B₉Me₂C₂H₈)(CO)₃(PMe₃)-Cp](PMe₃)Cp (Fig. 39c), in which the boron atom substituted by ruthenium has δ^{11} B = 65.4. ²⁶³ A novel heterotetranuclear metallocarborane anion (B₉C₂H₁₀)₂Mo₂Cu₂(μ -CO)₄(CO)₂(μ -H)²⁻ has recently been reported (Fig. 40). It has δ^{11} B = -9.8, -11.2, -14.1, -18.5 and -21.9. ²⁶⁴

E. B₁₀ and larger metalloboranes and metallocarboranes

The $B_{10}H_{12}M$ class of metalloboranes is densely populated, there being over 100 examples, incorporating some 20 different metals. All but two have the structure [45] with bridging hydrogen atoms on the B8-B9 and B10-B11 edges. The exceptions, 7-Me₅CpRhB₁₀H₁₁Cl(PhPMe₂) and (Me₆C₆)RuB₁₀H₁₃, have two B—H—M and one B—H—B bridge [46].

Reaction of $B_{10}H_{12}(SMe_2)_2$ and cis-(PhPMe₂)₂PtCl₂ produces, *inter alia*, 8-ClB₁₀H₁₁Pt(PhPMe₂)₂ and 8-Me₂SB₁₀H₁₁Pt(Cl)(PhPMe₂), the chlorine in the former compound being derived from the CH₂Cl₂ solvent. X-ray crystallography has shown that the halogen is attached to B8 in 8-ClB₁₀H₁₁Pt(PhPMe₂)₂ (Fig.41), which has $\delta^{11}B = 22.1$ (B2), 19.5 ($J(Pt-B) = 310 \pm 60$, B8), 12.9 (B5), 5.0 (B3), 4.4 (B11), 1.2 (B1), -0.8 (B10), -7.4 (B9), -21.2 (B4), and -30.7 B(6). Chemical shifts in the Me₂S compound are 16.0 (B2), 14.9 (B5), 4.6 (s, $J(Pt-B) \approx 260$, B8), 7.2, 7.0 (B3, 11), -4.4 (B10), -5.7 (B1), -9.1 (B9), -27.5 (B4) and -32.0 (B6) ppm. Its structure is deduced from the similarity of its ¹¹B NMR spectrum to that of 8-ClB₁₀H₁₁Pt(Ph)PMe₂)₂; shifts for the Me₃P analogue are the same to within 1 ppm. The 4.6 ppm singlet has approx. 260 Hz satellites due to splitting by ¹⁹⁵Pt. Therefore the Me₂S ligand must

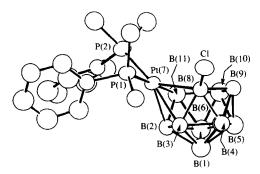


FIG. 41. ORTEP drawing of the molecular structure of $[8\text{-Cl-7,7-}(PMe_2Ph)_2\text{-}7\text{-}PtB_{10}H_{11}]$. Hydrogen atoms were not located, but the presence of terminal hydrogen atoms on all boron atoms except B(8), and the presence of bridging hydrogen atoms at B(8)/B(9) and B(10)/B(11), are reasonably inferred from NMR spectroscopy.

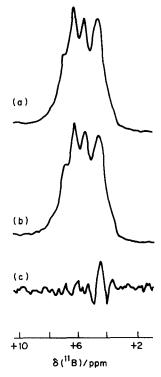


FIG. 42. ¹¹B spectra (128 MHz) of the B(1)B(8)B(10) region for the trimethylphosphine compound [8-(SMe₂)-7-(PMe₃)-7-Cl-7-PtB₁₀H₁₁] in CDCl₃ solution at +20°C: (a) spectrum with simultaneous {[¹H} selective-decoupling irradiation at ν [¹H(bridge)]; (b) straightforward unperturbed spectrum; (c) difference between (a) and (b), showing that selective sharpening of the singlet resonance (plus its ¹⁹⁵Pt satellites) occurs in the ¹¹B-{¹H} experiment which therefore assigns this resonance and the site of SMe₂ substitution to B(8).

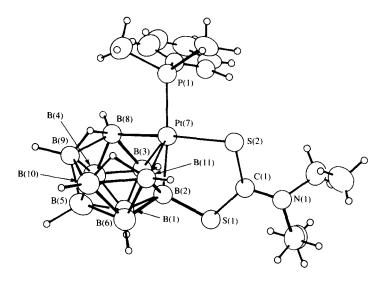


FIG. 43. ORTEP drawing of $[\mu$ -2,7-(SCSNEt₂)-7-(PMe₂Ph)-nido-7-PtB₁₀H₁₁], showing numbering scheme.

be attached to either B3 or B8. The latter is the case, since decoupling of the bridge protons results in sharpening of this singlet because B8 is located on the "open face" of the molecule and participates in B—H—B bridging. This sharpening, which is unobvious in the normal FT spectrum, is revealed by difference spectra (Fig. 42). 267 In $B_{10}H_{11}Pt(PhPMe_2)(\mu-2,7-S_2CNEt_2)$, a dithiocarbamate ligand bridges platinum and B2 (Fig. 43). The 32 MHz ^{11}B NMR spectrum is well resolved and shows peaks at 27.8, 15.6, 14.3, 9.1, 0.3, -6.2, -9.1, -22.9 and -28.3 ppm; that at 9.1 ppm is a singlet attributable to B2. A linear correlation in this compound between the ^{11}B and ^{1}H chemical shifts with a slope of 16 is noted; this is a value similar to that found in other $B_{6,8,10}$ metalloboranes. 268

The compounds 2,5-(EtO)₂-1,1-(PhPMe₂)₂MB₁₀H₈ have been obtained for M = Ru and Os, and they have very similar ¹¹B NMR spectra, both exhibiting a very high-frequency resonance (approx. 87 ppm) for B2, 5 and a cluster of peaks near 5 ppm (see Table 38). Proposed spectral assignments are based on ¹¹B-¹¹B COSY NMR data for (PhPMe₂)₂RuB₁₀H₈-(OMe)₂ and (PhPMe₂)₂RhHB₁₀H₈(OMe)₂. If (Ph₃P)₃OsCl₂ is used as the source of osmium instead of (PhPMe₂)₃OsCl₃, the *ortho*-cycloboronated osmaborane (Ph₃P)(Ph₂PC₆H₄)OsB₁₀H₇(OEt)₂ is obtained, in which a bond between one of the phenyl carbon atoms and B3 is established. In this compound B3 is slightly deshielded and gives rise to a singlet at 14.1 ppm (Fig. 44 and Table 39). ²⁶⁹

TABLE 38 $\label{eq:measured_NMR} \mbox{ Measured NMR parameters for } [(PMe_2Ph)_2MB_{10}H_8(OEt)_2] \ (M=Os \ or \ Ru) \ in \ CD_2Cl_2 \ solution \ at +21\,^{\circ}C.$

	M =	= Os	M = Ru		
Tentative assignment	δ^{11} B	δ^1 H	δ^{11} B	δ^1 H	
(2,5)	85.5 (2B)		88.3 (2B)		
(8, 10)	10.8 (2B)	4.04(2H)	7.8(2B)	3.63(2H)	
(9,11)	5.5 (2B)	2.55 (2H)	3.0(2B)	2.37 (2H)	
(3, 4, 6, 7)	4.8 (4B)	1.96 (4H)	6.8 (4B)	2.24 (4H)	

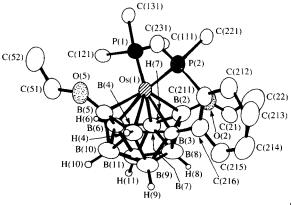


FIG. 44. ORTEP drawing of the molecular structure of [(PPh₃)(Ph₂PC₆H₄)OsB₁₀H₇-(OEt)₂], with selected organyl group atoms omitted for clarity.

The rhodaborane (PhPMe₂)₂RhHB₁₀H₈(OMe)₂ is obtained from (Et₃NH)₂B₁₀H₁₀ and (PhPMe₂)₃RhCl₃. It has δ^{11} B = 99.9 (B5, B—OEt), 70.7 (B2), 0.7 (B9, 11), -2.0, -3.1 (B3, 4; B6, 7), -4.7, -5.8 (B8, 10). Assignments are made by analogy with (PhPMe₂)₂RuB₁₀H₈(OMe)₂. The B-H coupling in the B(2)—H—Rh unit is estimated to be 55 ± 15 Hz.²⁷⁰

Two-dimensional $^{11}B_{-}^{11}B$ NMR has been applied to $Me_2TlB_{10}H_{12}^-$ (Fig. 45) and has yielded an assignment of the spectrum together with magnitudes and relative signs of $^{205}Tl_{-}^{11}B$ couplings (Table 40). Because each component of a particular ^{11}B doublet corresponds to a particular ^{205}Tl spin state, only one component of a particular doublet arising from ^{205}Tl splitting correlates with a particular component of another such doublet. Thus only two off-diagonal correlations link a given pair of doublets; and the sense of these two pairwise correlations gives the relative

δ^{11} B	$\delta^1 H$	Tentative assignment
84.5		2,5
78.9 ∫ 14.1		3
7.9	3.99	_
6.1	3.92	8, 10
5.1	1.69	One of 4, 6, 7; probably 4
2.9 1.7	$\left. \begin{array}{c} 2.33 \\ 2.42 \end{array} \right\}$	9,11
-0.7	1.53	Two of 4, 6, 7; probably 6, 7

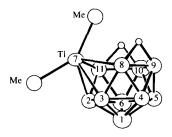


FIG. 45. Numbering scheme for $Me_2TlB_{10}H_{12}^-$.

TABLE~40 Selected ^{11}B NMR parameters for a saturated solution of $[TlMe_2]^+[Me_2TlB_{10}H_{12}]^-$ in $(CD_3)_2CO$ at $+21^{\circ}C$.

Assignment	δ^{11} B	Relative intensity	$^{n}J(^{205}\text{Tl}-^{11}\text{B})$	n	Approx. $T_1(^{11}B)$ (ms)
(8, 11)	8.2	2B	173	1	2.9
(1)	3.0	1B	84	2	15.5
(2,3)	-3.1	2B	258	1	9.7
(5)	-2.8	1B	<30	2	17.3
(9, 10)	-4.7	2B	<30	2	9.0
(4,6)	-31.7	2B	77	2	23.1

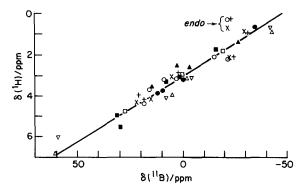


FIG. 46. $^{1}H_{-}^{-11}B$ nuclear-shielding correlation plot (with bridging protons omitted) for the compounds $[(PhMe_{2}P)_{2}PdB_{8}H_{12}]$ (X), $B_{10}H_{14}$ (\blacksquare), $PhMe_{2}P\cdot B_{9}H_{13}$ (\bigcirc), $[(PhMe_{2}P)_{4}PtPd-B_{8}H_{10}]$ (\blacksquare), $[(PhMe_{2}P)_{4}Pt_{2}B_{8}H_{10}]$ (\square), $(PhMe_{2}P)_{2}PtB_{10}H_{12}]$ (\blacktriangle), $[(PhMe_{2}P)_{2}PtB_{8}H_{12}]$ (+), $[(PhMe_{2}P)_{2}Pt_{2}(B_{6}H_{9})_{2}]$ (\triangle), and $[(Ph_{3}P)_{2}Pt_{2}(B_{6}H_{9})_{2}]$ (∇). The line drawn represents the ratio $\delta(^{11}B):\delta(^{11}H)=16:1$.

signs of ${}^{n}J({}^{205}\text{Tl}-{}^{11}\text{B}).{}^{271}$ A linear correlation between ${}^{1}\text{H}$ and ${}^{11}\text{B}$ chemical shifts in a coherent series of B₆, B₈ and B₁₀ metalloboranes containing Pd and Pt has been noted (Fig. 46). 272 Such welcome data will be of assistance in assigning spectra by spin-decoupling techniques.

A metalloborane, nido-(Me₅Cp)RhB₁₀H₁₁Cl(PhPMe₂), that is an exception to the B₁₀H₁₂M structural pattern, and which may be viewed as an analogue of B₁₁H₁₄, has recently been reported (Fig. 47). The B—H—Rh

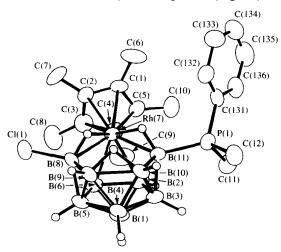


FIG. 47. Drawing of the molecular structure of [(C₅Me₅)Rh₁₀H₁₁Cl(PMe₂Ph)], with organyl hydrogen atoms omitted for clarity.

and B—H—B bridges are located, but they readily interconvert in solution as is the case with $B_{11}H_{14}^{-}$. ¹¹B NMR assignments are made with the use of 2D NMR spectroscopy: 14.2 (B3), 2.5 (B2), 1.7 B(4), -5.6 (B8), -9.5 (B6), -13.3 (B9), -16.9 (B10), -17.0 (B1), -18.5 (B5), and -29.2 (B11) ppm. The shielding values are grossly different from those for 8-Cl(PhPMe₂)₂PtB₁₀H₁₁, and it is probable that the fundamental structures of these two types of metalloboranes are also dissimilar. ²⁷³ A second example of this uncommon structural type is [Ru(NCMe)₆]-[7-Me₆C₆-nido-7-RuB₁₀H₁₃]₂. It has $\delta^{11}B = -0.8$ B(2,3), -7.2 (B4,6), -17.2 (B1), -17.7 (B9,10), -22.8 (B5), and -23.8 (B8,11).

The novel double-cluster metalloborane $[(Me_6C_6)_2Ru_2H_4]RuB_{10}H_{8-}(OEt)_2$ has been obtained from $(Me_6C_6)RuCl(B_3H_8)$ and $B_{10}H_{10}^2$; the two ethoxy groups are derived from the ethanol solvent. Its structure, shown in Fig. 48, features an $(arene)_2Ru_2(\mu-H_2)$ unit linked by two bridging hydrogen atoms to a $B_{10}Ru$ cluster. Its ¹¹B NMR spectrum has been assigned: 88.1 (B—OEt), 1.6 (B4, 5, 6, 7), 3.6 (B8, 9), -0.1 (B10, 11) ppm. Note that the numbering scheme adopts the latest recommended artifices and so is inconsistent with that used in earlier publications. ²⁷⁵ In an elaboration of the isolobal relationship between the R_3PAu and μ -H ligands it has been discovered that $B_{10}H_{14}$ and Et_3PAuMe react to form $(B_{10}H_{12}Au)$ - $(AuPEt_3)_4(AuB_{10}H_{12})$. In this triple-cluster compound two $AuB_{10}H_{12}$ cages are connected by an Au—Au bond (Fig. 49a). It has $\delta^{11}B = 119.9$

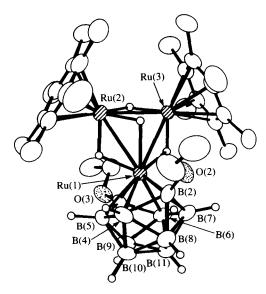


FIG. 48. Structure of [(Me₆C₆)₂Ru₂H₄]RuB₁₀H₈(OEt)₂.

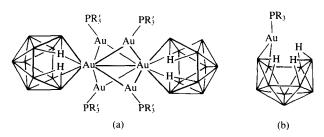


FIG. 49. Structures of $(B_{10}H_{12})(AuPEt_3)_4(AuB_{10}H_{12})$ (a) and $R_3PAuB_{10}H_{13}$ (b).

(br, 4B), 0.7 (2B), -4.9 (2B) and -24.5 (2B). However, use of more bulkyl phosphines permits isolation of smaller clusters, e.g. (c-C₆H₁₁)₃-PAuB₁₀H₁₃, δ^{11} B = 16.1 (1B), 9.3 (1B), 8.4 (1B), 2.8 (1B), 1.4 (1B), -0.6 (2B), -1.0 (1B), -29.5 (1B) and -35.6 (1B), whose structure is essentially like that of B₁₀H₁₄ with one bridging hydrogen atom replaced by a R₃PAu unit (Fig. 49b).

Platinum insertion into $B_{11}SeH_{11}$ yields $(Ph_3Pt)_2PtB_{10}H_{10}$. The ¹¹B NMR spectrum exhibits resonances at 18.5 (1B), 6.7 (m, 3B, J(Pt-B) = 226), -2.1 (2B), -12.2 (2B) and -20.9 (2B) ppm. ²⁷⁷

Reaction of (PhPMe₂)₃RuCl₃ with Na₂B₁₂H₁₂ yields (PhPMe₂)₃-RuB₁₂H₁₂, a novel RuB₁₂ metalloborane in which a P₃Ru fragment is linked via three B—H—Ru bonds to one triangular face of the B₁₂ cage (Fig. 50). Its ¹¹B NMR spectrum shows four doublets of unit area at -8.0, -10.2, -16.4 and -24.6 ppm (cf. -16 ppm for B₁₂H₁₂). Similarly, [(Ph₃P)₂ClRu]B₁₂H₁₁-7-NEt₃, in which the P₂ClRu fragment is similarly bonded and in which Et₃N substitutes for H⁻ on B7, adjacent to the ligating B₃ triangle, has δ^{11} B = 1.9 (s, 1B), -13.2 (2B), -14.5 and approx. 15 (4B), -16.1 (1B), -17.4 (1B) and -21.9 (2B). The tridentate B—H—Ru interaction is associated with approx. 9 ppm shielding of the three B—H—Ru positions in the cage and a reduction to about 100 Hz of ^{1}J (B–H).

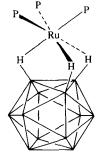


FIG. 50. Structure of (PhPMe₂)₃RuB₁₂H₁₂.

In a paper that is a cornucopia of new results, Greenwood and coworkers describe the reaction of $B_{10}H_{12}(SMe_2)_2$ with concentrated H_2SO_4 to provide $(6-B_{10}H_{13})_2O$ and $6-HOB_{10}H_{13}$. The ¹¹B NMR spectra of both are assigned with the use of partially relaxed Fourier-transform (PRFT) techniques. 6-HOB₁₀H₁₃ has δ^{11} B = 26.1 (B6), 6.5 (B1, 3), 5.0 (B9), 4.3 (B8, 10), -13.7 (B5), -31.7 (B6), and -43.7 (B7); in $(6.6'-B_{10}H_{13})_2$ O, the analogous peaks occur at 21.8, 5.6, 7.2, 3.0, -10.7, -33.2 and -42.5 ppm. T_1 data are obtained for 6-HOB₁₀H₁₃ as a function of temperature; values for the hydroxy compound are somewhat longer on account of the smaller molecular size (Fig. 51). Both oxygenated decaborane derivatives are provenders of a wide variety of metalloboranes. Reaction with cis-PtCl₂L₂ $(L = PhPMe_2 \text{ or } Ph_3P)$ yields arachno- $B_8H_{12}PtL_2$ (see above) and nido- $B_{10}H_{12}PtL_2$. Also formed is $Pt_2(\mu-\eta^3-B_6H_9)_2L_2$. This unusual compound has a P-Pt-Pt-P unit bonded to two tridentate B₆H₉ ligands (Fig. 52). The 11 B chemical shifts are -42.0 (d, 140, B1), -3.6 (d, 135, B2,4), 8.3 (d, 130, B5,6) and 59.7 (d, 135, B3); T_1 values are 7.7, approx. 0.9, approx. 1.0 and 2.5 ms respectively. The unusual high-frequency shift of B3 may be related to the Pt₂B feature in this molecule, and in the Ph₃P analogue it occurs at 60.5 ppm. Spin coupling between B2, 3, and B3, and ¹⁹⁵Pt is quite large, approx. 300 Hz. Additional structural features, not apparent in the electron-density maps but revealed by NMR studies are

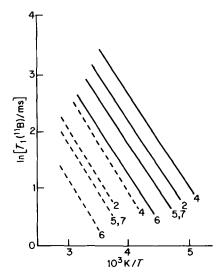


FIG. 51. Gross variation with temperature of the longitudinal relaxation times $T_1(^{11}B)$ of selected ^{11}B resonances of $B_{10}H_{13}OH$ in CDCl₃ (——) and $(B_{10}H_{13})_2O$ in ^{11}B CD₃C₆D₅ (——).

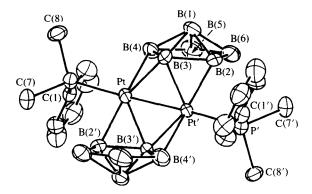


FIG. 52. Structure of Pt₂(B₆H₉)₂(PhPMe₂)₂.

bridging hydrogen atoms between B4-B5 and B2-B6, and a B5-H-B6 bridge. 233

A unique example of a B_{17} metalloborane, $(Me_5CpRh)_2B_{17}H_{19}$, arises from anti- $B_{18}H_{20}^{2-}$ and $(Me_5CpRhCl_2)_2$. Its structure is shown in Fig. 53, and an assignment of the ¹¹B NMR spectrum proposed: 28.0 (B6'), 19.2 (B6), 15.3 (B11), 13.8 (B3), 12.8 (B3'), 8.8 (B1'), 3.8 (B5), 3.1 (B2), 1.6 (B1), 1.3 (B8), 1.0 (B5'), -2.2 (B9), -5.6 (B10), -10.8 (B10'), -17.8 (B2'), -28.2 (B4), and -44.1 (B12) ppm.

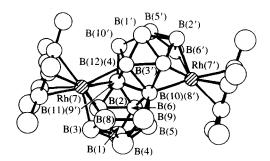


FIG. 53. Molecular structure of (C₅Me₅)₂Rh₂B₁₇H₁₉.

VII. COUPLED BORANES AND CARBORANES

Chloro and bromo derivatives of 2,2'-(B₅H₈)₂ have been prepared by Lewis-base-catalysed halogenation. ¹¹B NMR data for these compounds are in Table 41. ²⁸⁰ Boranes and carboranes coupled by B—B two-centre

TABLE 41

11B NMR data for coupled boranes.

Compound	$\delta^{11}\mathrm{B}$		
1-Cl-2,2-(B ₅ H ₇)(B ₅ H ₈)	-11.4(B2-5), -12.4(B2'-5'), -28.6(B1),		
1-Br-2,2'-(B ₅ H ₇)(B ₅ H ₈)	-51.3 (d, 171, B1') -10.9 (B2-5), -12.0, -13.0 (B2'-5'), -35.6 (B1), -51.1 (d, 182, B1')		
1,1'-Cl ₂ -2,2'-(B ₅ H ₇) ₂	-31.1 (d, 182, B1) -10.6, -12.1, -28.7 (B1)		
$1,1'-Br_2-2,2'-(B_5H_7)_2$	-9.1, -10.9, -12.2, -35.7 (B1)		
1'-Cl-1,2'-(B ₅ H ₈)(B ₅ H ₇)	-3.4 (B2'), -13.3 (d, 156, B2-5 and B3'-5'), -27 (B1'), -56.8 (B1)		
$1:2'-[2-MeB_5H_7][3'-MeB_5H_7]$	2.0 (s, B2, 3'), -4.0 (s, B2', J (B–B) = 112), -12.9 (d, 162, B3, 5, 4'), -17.8 (d, 162, B4, 5'), -49.1 (d, 177, B1'), -55.0 (s, B1, J (B–B) \approx 115)		
1:1'[B ₄ H ₉] ₂	-5.7 (t, 131, B2, 2', 4, 4'), -38.1 (s, B1, 1'), -39.5 (d, 174, B3, 3')		
1:2'-[B ₄ H ₉][B ₅ H ₈]	-5.9 (t, 126, B2, 4), -5.9 (s, B2'), -11.6 (d, 159, B3', 5'), -13.1 (d, 157, J (B-B) ≈ 21 , B4'), -39.2 (d, 170, B3), -41.5 (s, J (B-B) = 103, B1), -50.9 (d, 168, B1)		
1:2'-[B ₄ H ₉][1'-MeB ₅ H ₇]	-7.1 (t, 124, B2, 4), -7.1 (s, B2'), -12.3 (d, 157, B3', 5'), -13.7 (d, 171, J (B-B) = 25, B4'), -40.3 (d, 153, B3),		
2:2'-[1,6-B ₄ C ₂ H ₅] ₂	-41.8(s, B1), -43.3(s, B1') -13.8(d, 202, B4, 4'), -15.3(s, B2, 2'), -15.6(d, 196, B3, 3', 5, 5')		

bonds have been prepared by PtBr₂-catalysed fusion reactions. Structural assignments are derived from ¹¹B NMR data (Table 42). Values of approx. 100 Hz for J(B-B) are typical in materials such as $1:1'-(B_4H_9)_2$. ²⁸¹ High-resolution 128.4 MHz ¹¹B NMR spectra of a series of coupled boranes and carboranes have been published (see Table 42). The B–B coupling for two-centre bonds ranges from 149 Hz in $1:1'-(B_5H_8)_2$ to approx. 105 Hz in $1:2'-(B_{10}H_{13})_2$, but is substantially lower, 75 Hz, in $(Me_2N)_4B_2$. Spin coupling between boron nuclei within a cluster are an order of magnitude smaller. In cases where two ¹¹B nuclei are chemically equivalent, B–B couplings may be obtained from the ¹⁰B NMR spectra. Application of relationships between J(B-B) and s-orbital content ²⁸² are used to calculate the fractional s character of exopolyhedral B—B bonds.

Platinum bromide also catalyses the dehydrogenative coupling of small boranes and carboranes. Thus $1.5 \cdot B_3 \cdot C_2 \cdot H_5$ and $B_2 \cdot H_6$ give the new carborane $5.6 \cdot B_6 \cdot C_2 \cdot H_{12}$ (Fig. 54a), which has $\delta^{11} \cdot B = -10.6$ (d, 160, B3), -17.6 (td, 134, 28, B2,4) and -29.5 (dd, 160, 39, B8,10). The spectrum indicates the presence of a mirror plane of symmetry and of two

 $TABLE\ 42$ Spin–spin couplings in two-centre two-electron BB bonds.

Compound	$J(^{11}B-^{11}B)$
$3:3'-[2,4-C_2B_5H_6]_2$	151
$1:1'-[B_5H_8]_2$	149
$2:2'-[1,5-C_2B_3H_4]_2$	137
$2:2',3':1''-[1,5-C_2B_3H_4][1',5'-C_2B_3H_3][1'',5''-C_2B_3H_4]$	135 B ₂
$2': 2-[1',5'-C_2B_3H_4][1,6-C_2B_4H_5]$	131, 126
$1-(Cl_2B)B_5H_8$	≈124
$1:3'-[2,4-C_2B_5H_6]_2$	$124 B_3' (120 B_1)$
1-(Cl ₂ B)-2-ClB ₅ H ₇	≈122
$1:5'-[2,4-C_2B_5H_6]_2$	119
$1:2'-[\mathbf{B_5H_8}]_2$	$115 \mathbf{B_1} (110 \mathbf{B_2'}) 106$
$2:1'-[1-(CH_3)B_5H_7][B_5H_8)$	$121 B_1' (103 B_2)$
$1:2'-[B_{10}H_{13}]_2$	≈105
$3:5'-[2,4-C_2B_5H_6]_2$	≥100
$2:2'-[B_5H_8]_2$	≥79
$B_2[N(CH_3)_2]_4$	75

 ^{11}B NMR parameters for the dimers of B_5H_9 .

	J(11E	3- ¹¹ B)	$\delta^{11} \mathrm{B}$		
Compound	Base-to-apex	Exopolyhedral	Base	Apex	
1:1'-[B ₅ H ₈] ₂	17.7 ± 0.6	149.3 ± 3.7 (B1–B1')	-13.2	-55.4	
$1:2'-[B_5H_8]_2$	17.6 ± 2.4	109.6 ± 2.4	-3.6	-50.7	
	(B2, 3, 4, 5; B(3', 5')	(B2'-B1)	(B2')	(B1')	
	• • •	115.0 ± 2.4	-12.6	-56.2	
		(B1-B2')	(B2, 3, 4, 5; B3', 5')	(B1)	
	19.4 ± 2.4		-13.4		
	(B4')		(B4')		
$2:2'-[B_5H_8]_2$	20.5 ± 2.0	79.4 ± 1.4	-11.0	-51.2	
	(B3, 3', 5, 5')	(B2-B2')	(B2, 2')		
			-11.6		
			(B4, 4')		
	21.3 ± 2.0		-12.6		
	(B4, 4')		(B3, 5, 3', 5')		

TABLE 42 (cont.) ^{11}B NMR parameters for 2,4-C₂B₅H₇ and selected coupled dimers.

$J(^{11}B-^{11}B)$		3- ¹¹ B)	$\delta^{11} B$	
Compound	Base-to-apex	Exopolyhedral	Base	Apex
2,4-C ₂ B ₅ H ₇	9.2 ± 0.5		6.7	-22.1
	(B1-B5)		(B3)	(B1,7)
	9.7 ± 0.5		3.6	
	(B5~B1)		(B5, 6)	
$1:3'-[2,4-C_2B_5H_6]_2$		119.9 ± 2.9	8.0	-17.1
		(B3'-B1)	(B3)	(B1)
		123.7 ± 2.9	7.1	-18.5
		(B1-B3')	(B3')	(B7)
			5.3	-21.4
			(B5, 6)	(B1', 7')
			4.6	
			(B5', 6')	
$3:3'-[2,4-C_2B_5H_6]_2$	9.8 ± 0.6	151.4 ± 3.6	9.5	-21.1
	(B1-B5)		(B3, 3')	(B1,7,1',7')
	9.3 ± 0.6		5.0	
	(B5-B1)		(B5, 6, 5', 6')	
$3:5'-[2,4-C_2B_5H_6]_2$		≥100	~10.8	-21.0
			(B3)	(B1,7,1',7')
			8.0	
			(B3')	
			~6.2	
			(B5')	
			5.5	
			(B6')	
			4.9	·
			(B5,6)	

B—H—BH₂ groups that appear as a triplet of doublets. Spin coupling between B3 and B9 is unobserved in the 2D NMR spectrum. This may be a general phenomenon when one of the boron atoms is situated between two carbon atoms and on an "open face". The coupling product of $1,6\text{-B}_4\text{C}_2\text{H}_6$ and $B_2\text{H}_6$ is $2:1',2'\cdot[1,6\text{-B}_4\text{C}_2\text{H}_5][B_2\text{H}_5]$ (Fig. 54b), which is considered to feature a $1,6\text{-B}_4\text{C}_2\text{H}_5$ cage linked at B2 to an exopolyhedral $B_2\text{H}_5$ unit by means of a B—B—B three-centre bond. Its ¹¹B NMR spectrum contains peaks at -3.9 (t, 154, B1',2', $J(B\text{-B}) = 23\,\text{Hz}$), -12.6 (d, 202, 83,5), -16.0 (d, 128, 84) and -23.7 (s, 82) ppm. The -3.9 ppm triplet is assigned to the ligating BH₂ moiety. Spin coupling to B2, however,

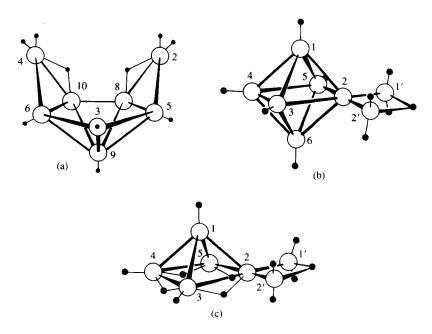


FIG. 54. Proposed structures for $5,6-C_2B_6H_{12}$ (a), $2:1',2'-[1,6-C_2B_4H_5][B_2H_5]$ (b) and $2:1',2'-[B_5H_8][B_2H_5]$ (c).

is unobserved. The ¹¹B NMR spectrum of 2: 1',2'-[B₅H₈]-[B₂H₅] (Fig. 54c), -1.5 (t, 128, J(B–B) = 26 Hz, B1'2'), -10.9 (d, 161, J(B–B) = 18 Hz, B3, 5), approx. 11 (s, B2), -12.0 (d, 161, J(B–B) = 19 Hz, B4), and -50.5 (d, 193, B1) ppm, may be similarly interpreted.²⁸⁴

¹¹B and ¹¹B(COSY) data for $[Bu_4N][anti-B_{18}H_{21}]$ have been published: 11.5 (s, 1B), 14.1 (1B), 10.2 (1B), 5.7 (1B), 4.0 (1B), 0.9 (s, 1B), -0.4 (1B), -3.7 (2B), -7.1 (1B), -9.9 (2B), -12.7 (2B), -23.3 (1B), -28.5 (1B), -38.4 (1B) and -40.4 (1B) ppm. ¹⁷⁸

Iso- $B_{18}C_4H_{22}$, formed in the pyrolysis of 7.8- $B_9C_2H_{13}$, has been reported to be 3-(8'-nido-5.6- $B_8C_2H_{11}$)-1.2- $B_{10}C_2H_{11}$, i.e. a two-centre bond connects B3 and B8 in the two cages (Fig. 55). This conclusion is indicated by the ¹¹B NMR spectrum, which is approximately a composite due to the two independent clusters. B-substitution generally leads to a 7 ± 1 ppm shift for the substituted boron atom and a -2 ± 1 ppm shift for adjacent atoms. Chemical-shift data and assignments are: 8.5 (br, B8'), 6.9 (B7'), 5.3 (B1'), -2.4 (B9'), -2.7 (B3', 9, 12), -7.9 (B10'), -8.8 (B8, 10), -11.6 (B3), -13.1 (B4, 11), -13.6 (B5, 7), -14.6 (B6), -27.0 (B2') and -37.4 ± 0.3 (B4') ppm. ²⁸⁵

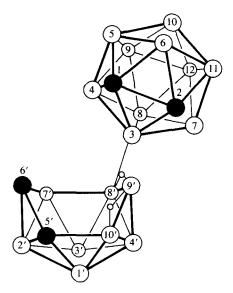


FIG. 55. Structure of i-B₁₈C₄H₂₂.

VIII. TRANSITION-METAL COMPLEXES OF BORON-CONTAINING HETEROCYCLES

Transition metals can bond to both planar faces of certain boron-containing heterocycles. This structural feature, uncommonly encountered with carbocyclic ligands, permits synthesis of linear, aggregated or "multiple-decker" compounds and even polymers. Even less aggregated structures display common and interesting bonding features, which distinguish this class of compounds.

The sandwich compound $(1\text{-Me-}2\text{-t-Bu-}1,2\text{-BNC}_3H_6)_2\text{Ru}$ forms two isomers, which have a clockwise and anticlockwise conformation of the two 1,2-azoborlinyl rings. The ¹¹B shifts for the undifferentiated isomers are 16.2 and 14.2 ± 0.5 ppm; and 16.0, 17.8 ppm for the B—SiMe₃ analogue.²⁸⁹ A series of cationic π -azaborolinyl complexes, illustrated by $(1,2\text{-Me}_2-1,2\text{-BNC}_3H_6)_2\text{Co}^+$, have $\delta^{11}\text{B} = 23 \pm 1$ ppm.²⁹⁰ The chemical shifts of Li[1-Me-2-t-Bu-1,2-BNC₃H₆] and the complex $(1\text{-Me-}2\text{-t-Bu-}1,2\text{-BNC}_3H_6)_2\text{Ni}$ are both 27 ppm,²⁹¹ and that of $(1,3\text{-Me}_2\text{-4},5\text{-Et}_2-1,3,2\text{-B}_2\text{SC}_2)\text{NiCp}$ is 26.8 ppm.²⁹²

The ¹¹B chemical shift for pentaphenylborole, which contains a C₄B ring, is 55 ppm. It undergoes a large shielding increase to 5 ppm upon complexation with pyridine.²⁹³ Transition-metal compounds catalyze the

isomerization of 3-borolenes to 2-borolenes. ²⁹⁴ A huge variety of transition-metal π -borole complexes has been prepared and studied. ^{295–302} Chemical shifts of representative examples are given in Table 43. Variation in the metal identity appears to produce little change in $\delta^{11}B$ on proceeding down a column in the periodic table (e.g. Ru to Os), but there is a significant shielding increase on proceeding across a row (e.g. Rh to Ru). Thus the ¹¹B chemical shifts of (PhBC₄H₄)Ru(CO)₃, (PhBC₄H₄)Os(CO)₃, (PhBC₄H₄)-RhHCl(PPh₃)₂ and (PhBC₄H₄)RuHCl(PPh₃)₂ are 21.4, 19.5, 32 and 9.4 ppm respectively. ²⁹⁵ The triple-decker complex (MeBC₄H₄)Co-(MeBC₄H₄Co(MeBC₄H₄) has $\delta^{11}B = 12.3$ (1B) and 22.8 (2B). These data reflect the general trend that boron in the centre RBC₄H₄ ring, to which two metals are bonded, is more shielded than that in the end or capping RBC₄H₄ rings to which only one metal atom is bonded. ^{296,298}

TABLE 43

11B NMR data for boron-heterocycle-metal complexes.

Compound	δ^{11} B	
Ph-3-borolene	86.2	
Mesityl-3-borolene	95.0	
Me ₂ N-3-borolene	51.1	
Et ₂ N-3-borolene	52.3	
Ph-2-borolene	73.9	
Me ₂ N-2-borolene	48.3	
Me-2-borolene	81.0	
Cl-2-borolene	71.4	
MeO-2-borolene	54.8	
$(MeOBC_4H_4)Ru(CO)_3$	28.3	
(MeBC ₄ H ₄)Ru(CO) ₃	22.8	
$(1,3,5-Me_3BC_4H_2)Ru(CO)_3$	18	
(PhBC ₄ H ₄)OsHCl(PPh ₃) ₂	9.0	
[(PhBC4H4)Rh(PMe3)3]Cl	25.2	
$(PhBC_4H_4)Ru(C_6H_6)$	13.5	
$(MeBC_4H_4)Co(CO)_2I$	27.9	
(MeBC ₄ H ₄)CoCp	21.9	
$(PhBC_4H_4)Co(PhBC_4H_4)Co(PhBC_4H_4)$	19.2 (2B), 11.9 (1B)	
$CpFe(PhBC_4H_4)Co(PhBC_4H_4)$	16.7 (2B), 7.3 (2B)	
$(MeBC_4H_4)Co(MeBC_4H_4)Mn(CO)_3$	24.7 (2B), 15.7 (1B)	
$Me_4N[(MeBC_4H_4)_2Co]$	13.9	
$(PhBC_4H_4)Co(PhBC_4H_4)Rh(C_8H_{12})$	18.2 (2B), 11.6 (1B)	
[(PhBC4H4)Co(PhBC4H4)Cr(CO)3]-	16.2 (2B), 12.9 (1B)	
$(CO)_3Mn(PhBC_4H_4)Mn(CO)_3$	19.7	
$(MeBC_4H_4)Fe(CO)_3$	22.4	
$(MeBC_4H_4)_2Co_2(CO)_4$	27.9	
Li ₂ [i-Pr ₂ NBC ₄ H ₄]	22	

TABLE 43 (cont.)

11B NMR data for	boron-heterocycle-metal	complexes.
------------------	-------------------------	------------

Compound	$\delta^{11} \mathrm{B}$
(i-Pr ₂ NBC ₄ H ₄)Ru(Me ₆ C ₆)	22
$(i-Pr_2NBC_4H_4)Rh(i-Pr_2NBC_4H_4)Rh(i-Pr_2NBC_4H_4)$	22 (2B), 11 (1B)
$(i-Pr_2NBC_4H_4)_2Rh_2(CO)_4$	29
i-Pr ₂ NBC ₄ H ₄ (NiCp) ₂	10
$(i-Pr_2NBC_4H_4)_2Ni$	26
$(MeBC_4H_4)Rh(MeBC_4H_4)Rh(MeBC_4H_4)$	22.3 (2B), 10.8 (1B)
$(MeBC_4H_4)_2RhH$	16.0
$Ph_4P[(PhBC_4H_4)Rh(CN)_3]$	23.6
CpFe(PhBC ₄ H ₄)Cr(CO) ₃	9.4
$(CpFe)_2$ -1-Ph-2-EtBC ₄ H ₃	4
$1-(i-Pr_2N)-2,3-(Me_3Si)_2-1-BC_4H_2$	22
(MeBC5H5)Co(C8H12)	24.3
(2-MeCOPhBC5H5)Co(Me4C4)	23.7
$(MeBC_5H_5)V(CO)_4$	28.7
(MeBC ₅ H ₅)HgCl	35.2
[(MeBC5H5)Cr(CO)3]2Hg	26.7
PPN[(MeBC5H5)Cr(CO)3]	23.1
[(PhBC5H5)Ni(CO)]2	27
$CpCo(1,3,4,5-Et_4-2-Me-1,3-B_2C_3)CoCp^+$	19.5
$CpCo(1,3,4,5-Et_4-2-Me-1,3-B_2C_3)_2Pt$	38, 15
$[CpFe(1,3,4,5-Et_4-2-Me-1,3-B_2C_3)]_2Pt$	15
$(1,3,4,5-Et_4-2-Me-1,3-B_2C_3)$ PdCp	37
$(1,3,4,5-Et_4-2-Me-1,3-B_2C_3)_2$ Pt	48
$[(1,3,4,5-Et_4-2-Me-1,3-B_2C_3)_2]^{2-}$	23

Treatment of 1-MeO-6-Me₃Si-1-bora-2,4-cyclohexadiene, $\delta^{11}B=47.1$, with pyridine yields the borabenzene complex Py—BC₅H₅, $\delta^{11}B=33.9$. This compound forms a wide variety of complexes in which a transition metal is π -bonded to the BC₅H₅ ring such as (Py—BC₅H₅)M(CO)₃ (M = Cr, Mo, W), $\delta^{11}B=22.3-23.5$. Other exemplary borabenzene complexes include (PhBC₅H₅)Co(Ph₄C₄), $\delta^{11}B=23$, (MeBC₅H₅)₂Co₂-(Me₄C₄)₂, 26.9, (PhBC₅H₅)V(CO)₄, 26.0, (PhBC₅H₅)HgCl, 33.0³⁰⁶ [(MeBC₅H₅)Cr(CO)₃]₂Hg, 26.7, (PhBC₅H₅)Ni(CO)]₂, 27. ³⁰⁸ Structure and bonding in this class of complexes have been thoroughly reviewed. ²⁸⁶

2,3-Dihydro-1,3-diboroles can act as three- or four-electron donors. Formal cleavage of a hydrogen atom from the methylene bridge leads to an intermediate radical, which can bind transition metals on one or both faces of the ring to form mono- or binuclear complexes.²⁸⁷ Thus reaction of

CpCo(C₂H₄)₂ with 1,3,4,5-Et₄-2-Me-1,3-diborolene affords (1-Me-2,3,4,5-Et₄-1,3-B₂C₃H)CoCp, $\delta^{11}B = 27.5$. The position of the proton on C1 is not well established, but it is considered that cobalt attains an 18-electron configuration by means of a three-centre two-electron Co—C—H or B—C—H interaction. In any event, the axial C—H proton is acidic, and methylation at C1 affords 1,1-Me₂-2,3,4,5-Et₄-1,3-B₂C₃)CoCp, whose ¹¹B chemical shift, 42.0 ppm, is greatly and unexpectedly different. It is thought that, owing to steric effects, the Me₂C(1) group may pivot so that the other methyl group comes into contact with the CpCo group. As a result, bonding between Co and C(1) is weakened and the Cp—B₂C₃ dihedral angle opens, and there arises a decreased shielding of the boron nuclei.

Diborolene complexes of CoCp may be converted to higher-nuclearity metal compounds. Reaction of $(1,2,5\text{-Me-}3,4\text{-Et}_2\text{-}1,3\text{-B}_2\text{C}_3\text{H})\text{CoCp}$ with $\text{Mn}_2(\text{CO})_{10}$ affords $(\text{CO})_3\text{Mn}(1,2,5\text{-Me}_3\text{-}3,4\text{-Et}_2\text{-}1,3\text{-B}_2\text{C}_3)\text{CoCp}$, [47], $\delta^{11}\text{B} = 18.3$:

$$\begin{array}{c|c}
\hline
Co \\
B \\
H
\end{array}$$

$$\begin{array}{c|c}
\hline
Mn_2(CO)_{10} & \xrightarrow{-4CO} \\
\hline
Co \\
B \\
Mn
\end{array}$$

$$\begin{array}{c|c}
\hline
CO \\
B \\
Mn
\end{array}$$

$$\begin{array}{c|c}
\hline
(CO)_3
\end{array}$$

Other examples of polymetallic diborolone complexes include $CpNi(1,3,4,5-Et_4-2-Me-1,3-B_2C_3)NiCp$, $\delta^{11}B=7$, the cation radical formed by one-electron oxidation, $\delta^{11}B=1874$, δ^{11} and $[CpCo(1,3-Me_2-4,5-Et_2B_2C_3H]_2Sn$, $\delta^{11}B=13$. Diborolene complexes containing cobalt, and palladium and platinum $\delta^{11}A^{11}$ have also been reported (see Table 43). The tetradecker compound $[(C_3H_5)Ni(1,3,4,5-Et_4-2-Me-1,3-B_2C_3)]_2Ni$ has $\delta^{11}B=20.7$. Synthesis of molecular (as opposed to polymeric) polymetallic diborolene derivatives has culminated with the hexadecker compound $[CpCo(1,3-Me_2-4,5-Et_2-1,3-B_2C_3H)Ni(1,3-Me_2-4,5-Et_2-1,3-B_2C_3H)]_2Ni$, $\delta^{11}B=34$ (Fig.56) δ^{11} Introduction of additional heteroatoms, however, opens up possibilities for additional complexity, an example of which is $(3,4-Et_2-2,5-Me_2-1,2,5-SB_2C_2)_2Fe(CO)$, $\delta^{11}B=32.8$.

IX. 11B NMR STUDIES OF SOLIDS

It is generally recognized that NMR spectra of solids are becoming increasingly easy to obtain, and application of this technique to solids is,

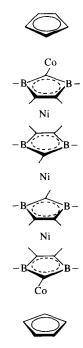


FIG. 56. Structure of a hexadecker metalloboron sandwich compound.

albeit slowly, gaining well-deserved attention. A principle application has been to the study of amorphous solids and materials lacking long-range order. In glasses ¹¹B NMR is sensitive only to nearest-neighbour boronbonding arrangements. On the other hand, ¹⁰B NMR is more sensitive to differences in quadrupole parameters that may reveal the presence of longer range structural order. 11B NMR experiments have shown that boron atoms having one or two nonbridging oxygens form in Na₂O-B₂O₃-SiO₂ glasses when the Na₂O content is increased. However, this effect is also a function of the SiO₂ content, a phenomenon that has been used to develop new models for local glass structure. 319 The amount of three-coordinate boron in BaO-B₂O₃-SiO₂ glasses is very sensitive to added Ti³⁺ according to ¹¹B (and ¹³⁷Ba) NMR results. It is suggested that microheterogeneities may arise from interaction of clustered titanium centres with nonbridging oxygen atoms in these glasses. 320 11B NMR measurements on the glassy ionic conductors $(Ag_2O)_x(Li_2O)_{1-x}\cdot 2B_2O_3$ have demonstrated the presence of both BO₃ and BO₄ units. ³²¹ Glasses of compositions $(ZnO)_x(B_2O_3)_y$ have been studied by 11B NMR. The 3:1 material contains three-coordinate boron with a quadrupolar coupling constant $Q_{cc} = 2.70 \,\text{MHz}$. In the 4:3

compound, four coordinate boron with $Q_{cc} = 112 \, \text{kHz}$ is found. A crystalline 1:1 material is shown to be a mixture of the 3:1 and 4:3 phases. Slow decay of stimulated ¹¹B spin echoes in borate glasses is associated with a randomness of spin detuning. ³²³

Variable-angle sample-spinning (VASS) NMR is a recently introduced technique that permits observation of high-resolution spectra of nonintegral $(I=\frac{3}{2},\frac{5}{2},\frac{7}{2},\frac{9}{2})$ spin quadrupolar nuclei in solids since it averages second-order quadrupolar interactions. Use of high fields leads to narrow lines because the strength of this interaction is inversely proportional to the value of the field. However, nuclei with different quadrupolar coupling constants but similar chemical shifts may not be resolved. Since the shift of the $(\frac{1}{2}, -\frac{1}{2})$ transition vanishes as the field approaches infinity. Resolution enhancement of ¹¹B signals from a borosilicate glass, Pyrex 7740, has been achieved by obtaining VASS spectra at *lower* fields, in this case the spinning angle is 75° at 3.52 T. Under these conditions, separate resonances for tetrahedral BO₄ and trigonal BO₃ units are resolved and sideband features suppressed. The VASS technique may be generally useful in systems in which quadrupole-induced shift differences are greater than intrinsic shift differences.

Contributions to wide-line spectra are associated with different electric field gradients and boron sites that are differentiated by chemical non-equivalence. Interaction of these gradients with the $^{11}\mathrm{B}$ quadrupole moment produces the observed spectral features. Thus wide-line $^{11}\mathrm{B}$ NMR indicates that glassy $\mathrm{B}_2\mathrm{S}_3$ contains boron in three-coordinate BS₃ groups. Li₂S-B₂S₃ glasses are structurally different from the oxygen analogues Li₂O-B₂O₃ in that the former maintains a higher fraction of four-coordinate boron. 325 Solid-state $^{11}\mathrm{B}$ NMR spectroscopy has been used to study various phases obtained in the systems, B-S, B-Se, B-S-Se and B-Te. In the first of these, BS₂ and B₂S₃ are observed and have $Q_{cc} = 2.46$ and 2.16 MHz respectively. In the B-Se system BSe₂, $Q_{cc} = 2.07$ MHz, is formed. All the phases contain trigonal boron. 326 Studies of the $^{11}\mathrm{B}$ NMR spectra of the glass-forming systems Li₂O-TeO₂-B₂O₃ and TeO₂-B₂O₃-Al₂O₃ have been reported. Narrow and wide lines due to four- and three-coordinate boron are observed. 327

¹¹B MAS NMR data for $PCl_xBr_{4-x}^+$ salts of $BCl_nBr_{4-n}^-$ have been published. The chemical shifts for BCl_3Br_- , $BCl_2Br_2^-$, $BClBr_3^-$ and BBr_4^- are -6.1, -13.2, -21.5 and -30.6 ppm respectively; linewidths are all approx. 48 Hz. ³²⁸ The wide-line variable-temperature NMR spectrum of the intercalation compound $C_{16}BF_4$, formed from graphite, BF_3 and ClF_3 reveals a large ¹¹B quadrupolar splitting, and so it is proposed that this material contains $B_2F_7^{-329,330}$

¹¹B spin-lattice relaxation times for the three isomers of B₁₀C₂H₁₂ have

Relaxation times	s and quadrupole of B ₁₀ C		ants in isomers
Compound	Position	δ^{11} B $T_1(s)$	$e^2 q Q$ (kHz)

Compound	Position	δ^{11} B $T_1(s)$	$e^2 q Q$ (kHz)
${1,2-B_{10}C_2H_{12}}$	9, 12	0.0373	917
7 10 - 2 12	8, 10	0.0488	801
	4, 5, 7, 11	0.0255	1109
	3,6	0.0149	1451
$1,7-B_{10}C_2H_{12}$	5,12	0.0370	921
, 10 2 12	9,10	0.0631	705
	4, 6, 8, 11	0.0351	946
	2,3	0.026	1099
$1,12-B_{10}C_2H_{12}$	2-11	0.0399	887

been measured. The boron quadrupole coupling constants are calculated, ignoring assymmetry parameters, from the ration $[1/T_1, {}^{11}B]/[1/T_1, {}^{13}C]$ [see Table 44). 331

Quadrupolar coupling constants for the alkaline-earth hexaborides EB_6 are 1.26 ± 0.02 , 0.56 ± 0.08 and 0.80 ± 0.04 MHz respectively for E=Ca, Sr and Ba. The ¹¹B chemical shifts correlate with the metallic radius of $E.^{332}$ Longitudinal dipolar fluctuations of rare-earth moments are found to be the main source of ¹¹B spin-lattice relaxation times in doped rare-earth borides such as $(Y_{1-x}Gd_x)Rh_4B_4$. Variations of T_1 in the superconducting states are associated with reduction of the electronspin relaxation times. ³³³

¹¹B NMR has been used effectively to probe the symmetry of the boron environment in $Ni_{100-x}B_x$ glasses (x = 40-18.5). There is a relatively narrow range of electrostatic field gradient components, implying weak fluctuations in bond angles and distances and in coordination geometry. Comparison with cubic Ni_3B and Ni_4B_3 indicates a trigonal prismatic arrangement of atoms around boron rather than the Archimedian antiprism found in cubic NiB_2 . ¹¹B spin-lattice relaxation times for the glassy metals and crystalline borides plotted as a function of x, with the exception of c-NiB₂, reside on a smooth curve. ³³⁴ Such studies promise to be quite helpful in understanding the structure of metallic glasses.

ACKNOWLEDGMENTS

The author is grateful to Ms Joan Piskura and Ms Pam Highstrom of the 3M Technical Library for providing access to the literature.

REFERENCES

- 1. A. R. Siedle, Ann. Rep. NMR Spectrosc., 1982, 12, 177.
- 2. T. L. Venable, W. C. Hutton and R. N. Grimes, J. Am. Chem. Soc., 1984, 106, 29.
- 3. D. P. Burum, J. Magn. Reson., 1984, 59, 430.
- 4. X. L. R. Fontaine and J. D. Kennedy, J. Chem. Soc. Chem. Commun., 1986, 779.
- 5. T. C. Gibb and J. D. Kennedy, J. Chem. Soc. Faraday Trans. 2, 1982, 78, 525.
- D. F. Gaines, C. K. Nelson, J. C. Kunz, J. H. Morris and D. Reed, *Inorg. Chem.*, 1984, 23, 3252.
- 7. W. Jarvis, Z. T. Abdou and T. Onak, Polyhedron, 1983, 2, 1067.
- 8. W. Biffar, H. Noth and D. Sedlak, Organometallics, 1983, 2, 579.
- 9. G. W. Kabalka, U. Sastry, K. A. R. Sastry, F. F. Knapp and P. C. Srivastava, J. Organomet. Chem., 1983, 259, 269.
- 10. P. C. Keller, Inorg. Chem., 1982, 21, 444.
- 11. P. C. Keller, Inorg. Chem., 1982, 21, 445.
- 12. M. Kameda and G. Kodama, Inorg. Chem., 1982, 21, 1267.
- 13. M. Kameda and G. Kodama, Inorg. Chem., 1984, 23, 3710.
- 14. M. Kameda and G. Kodama, Polyhedron, 1983, 2, 413.
- 15. M. Shimoi and G. Kodama, Inorg. Chem., 1983, 22, 3300.
- 16. H. Monegot and J. Atchekzai, Bull. Soc. Chim. Fr., 1983, I-70.
- 17. B. F. Speilvogel, F. U. Ahmed, G. L. Silvey, P. Wisian-Nelson and A. T. McPhail, *Inorg. Chem.*, 1984, 23, 4322.
- B. G. Speilvogel, F. U. Ahmed, K. W. Morse and A. T. McPhail, *Inorg. Chem.*, 1984, 23, 1776.
- 19. V. M. Norwood and K. W. Morse, *Inorg. Chem.*, 1987, 26, 284.
- 20. J. Bielawski, K. Niedenzu and J. S. Stewart, Z. Naturforsch., 1985, 40b, 389.
- 21. B. F. Speilvogel, F. U. Ahmed and A. T. McPhail, J. Am. Chem. Soc., 1986, 108, 3824.
- B. F. Speilvogel, F. U. Ahmed, M. K. Das and A. T. McPhail, *Inorg. Chem.*, 1984, 23, 3263.
- 23. P. Kolle and H. Noth, Chem. Rev., 1985, 35, 399.
- 24. H. Noth, B. Rasthofer and S. Weber, Z. Naturforsch., 1984, 38b, 1058.
- 25. H. Noth and S. Weber, Z. Naturforsch., 1983, 38b, 1460.
- 26. P. Kolle and H. Noth, Chem. Ber., 1986, 119, 3849.
- 27. C. K. Narula and H. Noth, Z. Naturforsch., 1983, 38b, 1161.
- 28. M. J. Farquharson and J. S. Hartman, J. Chem. Soc. Chem. Commun., 1984, 256.
- 29. D. Y. Lee and J. C. Martin, J. Am. Chem. Soc., 1984, 106, 5745.
- 30. P. Paetzold and R. Truppat, Chem. Ber., 1983, 116, 1531.
- 31. H. U. Meier, P. Paetzold and E. Schroder, Chem. Ber., 1984, 117, 1954.
- P. Paetzold, C. von Plotho, G. Schmid, R. Boese, B. Schraeder, D. Bougard, U. Pfeiffer,
 R. Gleiter and W. Schaeffer, Chem. Ber., 1984, 117, 1089.
- 33. P. Paetzold and C. von Plotho, Chem. Ber., 1982, 115, 2819.
- 34. M. Haase and U. Klingbiel, Angew. Chem. Int. Ed. Engl., 1985, 24, 324.
- 35. P. Paetzold, C. von Plotho, G. Schmid and R. Boese, Z. Naturforsch., 1984, 39b, 1069.
- 36. H. Noth and S. Weber, Z. Naturforsch., 1983, 38b, 1460.
- 37. B. Glaser and H. Noth, Angew. Chem. Int. Ed. Engl., 1985, 24, 416.
- 38. P. Paetzold, C. von Plotho, H. Schwan and H.-U. Meier, Z. Naturforsch., 1984, 39b, 610.
- 39. H. Noth and S. Weber, Chem. Ber., 1985, 118, 2144.
- 40. A. Brandl and H. Noth, Chem. Ber., 1985, 118, 3759.
- J. R. Jennings, R. Snaith, M. M. Mahmoud, S. C. Wallwork, J. Halfpenny, E. A. Petch and K. Wade, J. Organometal. Chem., 1983, 249, C1.

- 42. R. A. Bartlett, X. Feng and P. P. Power, J. Am. Chem. Soc., 1986, 108, 6817.
- 43. X. Feng, M. M. Olmstead and P. P. Power, Inorg. Chem., 1986, 25, 4615.
- 44. H.-J. Bestman and T. Arenz, Angew. Chem. Int. Ed. Engl., 1984, 23, 381.
- 45. F. Dirschl, H. Noth and W. Wagner, J. Chem. Soc. Chem. Commun., 1984, 1533.
- 46. H. Klusik and A. Berndt, Angew. Chem. Int. Ed. Engl., 1983, 22, 877
- 47. R. Wehrman, H. Klusik and A. Berndt, Angew. Chem. Int. Ed. Engl., 1984, 23, 369.
- 48. R. Wehrman, H. Klusik and A. Berndt, Angew. Chem. Int. Ed. Engl., 1984, 23, 826.
- 49. C. Pues and A. Berndt, Angew. Chem. Int. Ed. Engl., 1984, 23, 313.
- 50. C. Habben and A. Meller, Chem. Ber., 1984, 117, 2351.
- M. Hildenbrand, H. Pritzkow, U. Zenneck and W. Siebert, Angew. Chem. Int. Ed. Engl., 1984, 23, 371.
- 52. S. M. van der Kerk, P. M. H. Budzelaar, A. van der Kerk-van Hoof, G. J. M. van der Kerk and P. von R. Schleyer, *Angew. Chem. Int. Ed. Engl.*, 1983, 22, 48.
- R. Wherman, C. Pues, M. Kluski and A. Berndt, *Angew. Chem. Int. Ed. Engl.*, 1984, 23, 372.
- 54. S. M. van der Kerk, P. M. H. Budzelaar, A. L. M. van Eekeren and G. J. M. van der Kerk, Polyhedron, 1984, 3, 271.
- 55. B. Pachaly and R. West, J. Am. Chem. Soc., 1985, 107, 2987.
- 56. H. Klusik and A. Berndt, J. Organometal. Chem., 1982, 234, C17.
- 57. P. Kolle, H. Noth and R. T. Paine, Chem. Ber., 1986, 119, 2681.
- 58. H. E. Fisch, H. Pritzkow and W. Siebert, Angew. Chem. Int. Ed. Engl., 1984, 23, 608.
- 59. K. Niedenzu, P. M. Niedenzu and K. R. Warner, Inorg. Chem., 1985, 24, 1604.
- C. M. Clarke, K. Niedenzu, P. M. Niedenzu and S. Trofimenko, *Inorg. Chem.*, 1985, 24, 2648.
- 61. J. Bielawski and K. Niedenzu, Inorg. Chem., 1986, 25, 85.
- 62. J. Bielawski, M. K. Das, E. Hanecker, K. Niedenzu and H. Noth, *Inorg. Chem.*, 1986, 25, 4623
- 63. K. Niedenzu and P. M. Niedenzu, Inorg. Chem., 1984, 23, 3713.
- 64. J. Bielawski, T. G. Hodgkins, W. J. Layton, K. Niedenzu, P. M. Niedenzu and S. Trofimenko, *Inorg. Chem.*, 1986, 25, 87.
- 65. E. Hanecker, T. G. Hodgkins, K. Niedenzu and H. Noth, Inorg. Chem., 1985, 24, 459.
- W. J. Layton, K. Niedenzu, P. M. Niedenzu and S. Trofimenko, *Inorg. Chem.*, 1985, 24, 1454.
- 67. K. Bielawski and K. Niedenzu, Inorg. Chem., 1986, 25, 1771.
- 68. K. Niedenzu and H. Noth, Chem. Ber., 1983, 116, 1132.
- 69. H. Fisch, H. Pritzkow and W. Siebert, Angew. Chem. Int. Ed. Engl., 1984, 23, 608.
- B. M. Mikhailov, M. E. Gurskii and D. G. Pershin, J. Organometal. Chem., 1983, 246, 19.
- M. E. Gurskii, S. V. Baranin, A. S. Shaskov, A. I. Lutsenko and B. M. Mikhailov, J. Organometal. Chem., 1983, 246, 129.
- 72. W. Siebert, U. Ender and W. Herter, Z. Naturforsch., 1985, 40b, 326.
- 73. B. Wrackmeyer, Organometallics, 1984, 3, 1.
- A. J. Ashe, S. T. Abu-Orabi, O. Eisenstein and H. F. Sandford, J. Org. Chem., 1983, 48, 901.
- 75. A. J. Ashe and F. J. Drone, J. Am. Chem. Soc., 1987, 109, 1879.
- 76. W. Haubold, J. Hrebicek and G. Sawitzki, Z. Naturforsch., 1984, 39b, 1027.
- 77. B. Lauer and G. Wulff, J. Organometal. Chem., 1983, 256, 1.
- 78. R.-J. Binnerwirtz, H. Klingenberger, R. Welte and P. Paetzold, *Chem. Ber.*, 1983, 116, 1271.
- 79. R. Bravo and J.-P. Laurent, J. Chem. Res. (S), 1983, 61.

- R. Contreras, C. Garcia, T. Mancilla and B. Wrackmeyer, J. Organometal. Chem., 1983, 246, 213.
- 81. E. Hohaus, Z. Anorg. allg. Chem., 1983, 506, 185.
- 82. L. Horner, U. Kaps and G. Simons, J. Organometal. Chem., 1985, 287, 1.
- 83. W. Kliegel, D. Nanninga, S. J. Rettig and T. Trotter, Can. J. Chem., 1983, 61, 2329.
- 84. W. Maringgele, G. M. Sheldrick, A. Meller and M. Noltemeyer, *Chem. Ber.*, 1984, 117, 2112.
- 85. P. C. Keller, R. L. Marks and J. V. Rund, Polyhedron, 1983, 2, 595.
- 86. R. Koster, G. Seidel, S. Kerschl and B. Wrackmeyer, Z. Naturforsch., 1987, 42b, 191.
- 87. H.-O. Berger and H. Noth, J. Organometal. Chem., 1983, 250, 33.
- 88. R. Koster and G. Seidel, Angew. Chem. Int. Ed. Engl., 1984, 23, 155.
- O. Graalman, U. Klingebiel, W. Clegg, M. Haase and G. M. Sheldrick, Z. Anorg. allg. Chem., 1984, 519, 87.
- 90. V. J. Heintz, W. A. Freeman and T. A. Keiderling, *Inorg. Chem.*, 1983, 22, 2319.
- 91. M. Yalpani and R. Koster, Chem. Ber., 1983, 116, 3332.
- 92. M. Yalpani, R. Boese and D. Blaser, Chem. Ber., 1983, 116, 3338.
- 93. M. Yalpani, R. Koster and G. Wilke, Chem. Ber., 1983, 116, 1336.
- 94. H. Noth, Z. Naturforsch., 1984, 39b, 1463.
- F. Santiesteban, M. A. Campos, H. Morales, R. Contreras and B. Wrackmeyer, Polyhedron, 1984, 3, 589.
- 96. P. Idelmann, G. Muller, W. Scheidt, W. Schussler and R. Koster, *Angew. Chem. Int. Ed. Engl.*, 1984, 23, 153.
- 97. H. Binder, W. Matheis, H.-J. Dieseroth and H. Fu-Son, Z. Naturforsch., 1983, 38b, 554.
- 98. M. Yalpani and R. Boese, Chem. Ber., 1983, 116, 3347.
- M. Noltemeyer, G. M. Sheldrick, C. Habben and A. Meller, Z. Naturforsch., 1983, 38b, 1182.
- 100. C. Habben, A. Meller and G. M. Sheldrick, Z. Naturforsch., 1986, 41b, 1093.
- 101. K. Wolfer, H.-D. Hausen and H. Binder, Z. Naturforsch., 1985, 40b, 235.
- L. Bhal, R. V. Singh and J. P. Tandon, Synth. React. Inorg. Met.-Org. Chem., 1983, 13, 613.
- 103. C. Habben and A. Meller, Z. Naturforsch., 1984, 39b, 1022.
- 104. B. Wrackmeyer, Polyhedron, 1986, 5, 1709.
- 105. B. Wrackmeyer, Z. Naturforsch., 1982, 37b, 788.
- 106. R. Contreras and B. Wrackmeyer, Spectrochim. Acta, 1982, 38A, 941.
- 107. H. C. Brown and P. K. Jadhav, J. Am. Chem. Soc., 1983, 105, 2092.
- 108. H. Klusik, C. Pues and A. Berndt, Z. Naturforsch., 1984, 39b, 1042.
- 109. B. Wrackmeyer, C. Bihlmeyer and M. Schilling, Chem. Ber., 1983, 116, 3182.
- 110. H. C. Brown, B. Basavalah and N. G. Bhat, Organometallics, 1983, 2, 1468.
- 111. R. J. Binnerwitz, H. Klingenberger, R. Welte and P. Paetzold, *Chem. Ber.*, 1983, 116, 1271.
- 112. N. S. Hosmane, N. N. Sirmokadam and M. N. Mollenhauer, J. Organometal. Chem., 1985, 279, 359.
- 113. W. Haubold, A. Gemmler and U. Kratz, Z. Anorg. allg. Chem., 1983, 507, 222.
- 114. H. C. Brown and T. E. Cole, Organometallics, 1983, 2, 1316.
- 115. H. Burger, M. Grunwald and G. Pawelke, J. Fluorine Chem., 1985, 28, 183.
- 116. H. Noth and D. Sedlak, Chem. Ber., 1983, 116, 1479.
- 117. A. Fox, J. S. Hartman and R. E. Humphries, J. Chem. Soc. Dalton Trans., 1982, 1275.
- 118. D. R. Martin, J. U. Mondal, R. D. Williams, J. B. Iwamoto, N. C. Massey, D. M. Nuss and P. L. Scott, *Inorg. Chim. Acta*, 1983, 70, 47.
- 119. J. M. Miller, Inorg. Chem., 1983, 22, 2384.

- 120. B. Glaser and H. Noth, Chem. Ber., 1986, 119, 3253.
- 121. J.-M. Dupart, S. Pace and J. G. Riess, J. Am. Chem. Soc., 1983, 105, 1051.
- 122. H. Noth and W. Storch, Chem. Ber., 1984, 117, 2140.
- 123. L. Synoradzki, R. Mynott, J. Anbei, Y. Tsay and R. Koster, Chem. Ber., 1984, 117, 2863.
- C. Eaborn, M. N. A. El-Kheli, P. B. Hitchcock and J. D. Smith, J. Chem. Soc. Chem. Commun., 1984, 1673.
- J. L. Atwood, S. G. Bott, C. Eaborn, M. N. A. El-Kheli and J. D. Smith, J. Organomet. Chem., 1985, 294, 23.
- C. Eaborn, M. N. El-Kheli, N. Retta and J. D. Smith, J. Organomet. Chem., 1983, 249, 23
- C. Eaborn, N. Retta, J. D. Smith and P. B. Hitchcock, J. Organomet. Chem., 1982, 235, 265.
- 128. C. Eaborn, M. N. A. El-Kheli, P. B. Hitchcock and J. D. Smith, J. Organomet. Chem., 1984, 272, 1.
- 129. P. B. Hitchcock, H. A. Jasim, M. F. Lappert and H. D. Williams, J. Chem. Soc. Chem. Commun., 1984, 662.
- 130. S. Kerschl and B. Wrackmeyer, J. Chem. Soc. Chem. Commun., 1986, 403.
- 131. H. E. Katz, J. Am. Chem. Soc., 1985, 107, 1420.
- 132. R. M. Farmer, Y. Sasaki and A. I. Popov, Aust. J. Chem., 1983, 36, 1785.
- S. H. Lawrence, S. G. Shore, T. F. Koetzle, J. C. Huffman, C.-Y. Wei and R. Bau, *Inorg. Chem.*, 1985, 24, 3171.
- 134. G. A. Olah, K. Laali and O. Farooq, J. Org. Chem., 1984, 49, 4951.
- 135. W. Totsch, H. Aichinger and F. Sladky, Z. Naturforsch., 1983, 38b, 332.
- 136. J. G. Dawber and S. I. E. Green, J. Chem. Soc. Faraday Trans. 1, 1986, 82, 3407.
- 137. C. G. Salentine, Inorg. Chem., 1983, 22, 3920.
- 138. F. Teixidor, C. Vinas and R. W. Rudolph, Inorg. Chem., 1986, 25, 3339.
- 139. R. E. DePoy and G. Kodama, Inorg. Chem., 1985, 24, 2871.
- 140. W. Haubold and P. Jacob, Z. Anorg. allg. Chem., 1983, 507, 231.
- 141. N. E. Miller, J. Organomet. Chem., 1984, 269, 123.
- 142. B. Wrackmeyer, Z. Naturforsch., 1982, 37b, 412.
- 143. R. Schlogl and B. Wrackmeyer, Polyhedron, 1985, 4, 885.
- 144. D. G. Meina, J. H. Morris and D. Reed, Polyhedron, 1986, 5, 1639.
- M. Arunchaiya, J. H. Morris, S. J. Andrews, D. A. Welch and A. J. Welch, J. Chem. Soc. Dalton Trans., 1984, 2525.
- 146. M. Kameda, M. Shimoi and G. Kodama, Inorg. Chem., 1984, 23, 3705.
- 147. N. S. Hosmane, N. N. Sirmokadam and R. Herber, Organometallics, 1984, 3, 1665.
- N. S. Hosmane, P. de Heester, N. N. Maldar, S. B. Potts, S. S. C. Chu and R. Herber, Organometallics, 1986, 5, 772.
- 149. J. A. Heppert and D. F. Gaines, Inorg. Chem., 1983, 22, 3155.
- 150. D. F. Gaines and D. E. Coons, J. Am. Chem. Soc., 1985, 107, 3266.
- 151. D. F. Gaines, J. A. Heppert and J. C. Kunz, Inorg. Chem., 1985, 24, 621.
- 152. D. F. Gaines, J. C. Kunz and M. J. Kulzick, Inorg. Chem., 1985, 24, 3336.
- D. F. Gaines, J. A. Heppert, D. E. Coons and M. W. Jorgenson, *Inorg. Chem.*, 1982, 21, 3663.
- 154. M. A. Nelson, M. Kameda, S. A. Snow and G. Kodama, Inorg. Chem., 1982, 21, 2898.
- 155. T. Davan, E. E. Corcoran and L. G. Sneddon, Organometallics, 1983, 2, 1693.
- 156. D. F. Gaines and G. A. Steehler, J. Chem. Soc. Chem. Commun. 1984, 1127.
- 157. D. F. Gaines and D. E. Coons, *Inorg. Chem.* 1986, 25, 364.
- 158. R. J. Astheimer and L. G. Sneddon, *Inorg. Chem.*, 1984, 23, 3207.
- 159. J. H. Osborne, R. C. P. Hill and D. M. Ritter, Inorg. Chem., 1986, 25, 372.

- Z. J. Abdou, M. Saltis, B. Oh, G. Siwap, T. Banuelos, W. Nam and T. Onak, *Inorg. Chem.*, 1985, 24, 2363.
- 161. K. Fuller and T. Onak, J. Organometal. Chem., 1983, 249, C6.
- 162. G. Siwapinyoyos and T. Onak, Inorg. Chem., 1982, 21, 156.
- 163. W. Preetz and J. Fritze, Z. Naturforsch., 1984, 39b, 1472.
- 164. W. Preetz and J. Fritze, Z. Naturforsch., 1987, 42b, 287.
- 165. R. Koster, G. Seidel and B. Wrackmeyer, Angew. Chem. Int. Ed. Engl., 1984, 23, 512.
- 166. R. Koster, G. Seidel and B. Wrackmeyer, Angew. Chem. Int. Ed. Engl., 1985, 24, 326.
- 167. K. Base, S. Hermanek and F. Hanousek, J. Chem. Soc. Chem. Commun., 1984, 299.
- 168. G. B. Jacobsen, J. H. Morris and D. Reed, J. Chem. Soc. Dalton Trans., 1984, 415.
- J. J. Briguglio, P. J. Carroll, E. W. Corcoran and L. G. Sneddon, *Inorg. Chem.*, 1986, 25, 4618.
- 170. O. W. Howarth, M. J. Jasztal, J. G. Taylor and M. G. H. Wallbridge, *Polyhedron*, 1985, 4, 1461.
- 171. B. Stibr, S. Hermanek, S. Janousek, Z. Pizak, J. Dolansky and J. Plesek, *Polyhedron*, 1982, 1, 822.
- 172. J. R. Wermer, N. S. Hosmane, J. J. Alexander, U. Siriwardane and S. G. Shore, *Inorg. Chem.*, 1986, 25, 4351.
- 173. B. Stibr, Z. Janousek, J. Plesek, T. Jelinek and S. Hermanek, J. Chem. Soc. Chem. Commun., 1985, 1365.
- 174. T. L. Venable, R. B. Maynard and R. N. Grimes, J. Am. Chem. Soc., 1984, 106, 6187.
- 175. N. S. Hosmane, M. Dehghan and S. Davies, J. Am. Chem. Soc., 1984, 106, 6435.
- 176. K. Baesz, Coll. Czech. Chem. Commun., 1983, 48, 2593.
- 177. D. A. Saulys, N. A. Kutz and J. A. Morrison, Inorg. Chem., 1983, 22, 1821.
- 178. G. B. Jacobsen, D. G. Meina, J. H. Morris, C. Thomson, S. J. Andrews, D. Reed, A. J. Welch and D. F. Gaines, J. Chem. Soc. Dalton Trans. 1985, 1645.
- 179. G. B. Jacobsen, J. H. Morris and D. Reed, J. Chem. Soc. Dalton Trans., 1984, 415.
- 180. D. Reed, J. Chem. Res. (S), 1984, 198.
- 181. E. H. Wong, M. G. Gatter and R. M. Kabbani, Inorg. Chem. 1982, 21, 4022.
- 182. A. Arafat, J. Baer, J. C. Huffman and L. J. Todd, Inorg. Chem., 1986, 25, 3757.
- 183. A. Arafat, G. D. Friesen and L. J. Todd, Inorg. Chem., 1983, 22, 3721.
- 184. C. Vinas, W. M. Butler, F. Teixidor and R. W. Rudolph, Inorg. Chem., 1986, 25, 4369.
- 185. D. C. Busby and M. F. Hawthorne, Inorg. Chem. 1982, 21, 4101.
- 186. W. Preetz, H.-G. Srebny and H. C. Marsman, Z. Naturforsch., 1984, 39b, 6.
- 187. S. Wu and M. Jones, Inorg. Chem., 1986, 25, 4802.
- 188. F. Teixidor and R. W. Rudolph, J. Organometal. Chem., 1983, 241, 301.
- 189. E. H. Wong, L. Prasad, E. J. Gabe and M. C. Gatter, Inorg. Chem., 1983, 22, 1143.
- C. T. Brewer, R. G. Swisher, E. Sinn and R. N. Grimes, J. Am. Chem. Soc., 1985, 107, 3558.
- 191. H.-G. Srebny, W. Preetz and H. C. Marsman, Z. Naturforsch., 1983, 39b, 189.
- 192. N. N. Greenwood, Chem. Soc. Rev., 1984, 13, 353.
- 193. N. N. Greenwood, Pure Appl. Chem., 1983, 55, 1415.
- 194. M. Mancini, P. Bougeard, R. C. Burns, M. Mlekuz, B. G. Sayer, J. I. A. Thompson and M. J. McGlinchey, *Inorg. Chem.*, 1984, 23, 1072.
- 195. M. V. Baker and L. D. Field, J. Chem. Soc. Chem. Commun., 1984, 996.
- 196. D. J. Wink and N. J. Cooper, J. Chem. Soc. Chem. Commun., 1984, 1257.
- 197. M. F. Lappert, A. Singh, J. L. Atwood and W. E. Hunter, J. Chem. Soc. Chem. Commun., 1983, 206.
- 198. M. V. R. Stainer and J. Takats, J. Am. Chem. Soc., 1983, 105, 410.

- R. Shinomoto, J. G. Brennan, N. M. Edelstein and A. Zalkin, *Inorg. Chem.*, 1985, 24, 2896.
- 200. G. V. Fazakerley, G. Folcher and H. Marquet-Ellis, Polyhedron, 1984, 3, 457.
- T. M. Gilbert, F. J. Hollander and R. G. Bergman, J. Am. Chem. Soc., 1985, 107, 3508.
- 202. R. L. Bausemer, J. C. Huffman and K. G. Caulton, J. Am. Chem. Soc., 1983, 105, 6163.
- J. C. Vites, C. E. Housecroft, G. B. Jacobsen and T. P. Fehlner, Organometallics, 1984, 3, 1591.
- J. Vites, C. E. Housecroft, C. Eigenbrodt, M. L. Buhl, G. J. Long and T. P. Fehlner, J. Am. Chem. Soc., 1986, 108, 3304.
- 205. C. E. Housecroft and T. P. Fehlner, Organometallics, 1986, 5, 379.
- 206. K. S. Wong, W. R. Scheidt and T. P. Fehlner, J. Am. Chem. Soc., 1982, 104, 1111.
- W. F. McNamara, E. Duesler, R. T. Paine, J. V. Ortiz and H. Noth, Organometallics, 1986. 5, 380.
- G. A. Carriedo, G. P. Elliot, J. A. K. Howard, D. B. Lewis and F. G. A. Stone, J. Chem. Soc. Chem. Commun., 1984, 1585.
- 209. D. Palladino and T. P. Fehlner, Organometallics, 1983, 2, 1692.
- 210. J. Feilong, T. P. Fehlner and A. L. Rheingold, J. Am. Chem. Soc., 1987, 109, 1860.
- S. A. Snow, M. Shimoi, C. D. Ostler, B. K. Thompson, G. Kodama and R. W. Parry, Inorg. Chem., 1984, 23, 511.
- 212. S. A. Snow and G. Kodama, Inorg. Chem., 1985, 24, 796.
- 213. R. P. Micciche, P. J. Carroll and L. G. Sneddon, Organometallics, 1985, 4, 1619.
- 214. J. Bould, N. N. Greenwood and J. D. Kennedy, J. Organometal. Chem., 1983, 249, 11.
- S. K. Boocock, M. A. Toft, K. E. Inkrott, L. Y. Hsu, J. C. Huffman and S. G. Shore, Inorg. Chem., 1983, 23, 3084.
- 216. N. S. Hosmane and N. N. Sirmokadam, Organometallics, 1984, 3, 1119.
- 217. R. P. Micciche and L. G. Sneddon, Organometallics, 1983, 2, 674.
- 218. T. G. Swisher, E. Sinn and R. N. Grimes, Organometallics, 1984, 3, 599.
- 219. R. B. Maynard, R. G. Swisher and R. N. Grimes, Organometallics, 1983, 2, 500.
- 220. R. Swisher, E. Sinn and R. N. Grimes, Organometallics, 1983, 2, 506.
- 221. L. Barton and P. K. Rush, Inorg. Chem., 1985, 24, 3413.
- 222. L. Borodinsky and R. N. Grimes, Inorg. Chem., 1982, 21, 1921.
- 223. L. Borodinsky, E. Sinn and R. N. Grimes, Inorg. Chem., 1982, 21, 1928.
- 224. J. J. Briguglio and L. G. Sneddon, Organometallics, 1985, 4, 721.
- 225. R. P. Micciche, J. J. Briguglio and L. G. Sneddon, Organometallics, 1984, 3, 1396.
- 226. M. B. Fischer, D. F. Gaines and J. A. Ulman, J. Organometal. Chem., 1982, 231, 55.
- 227. N. W. Alcock, C. Parkhill and M. G. H. Wallbridge, Acta Crystallogr., 1985, 41, 716.
- 228. P. K. Rush and L. Barton, Polyhedron, 1985, 4, 1741.
- 229. D. E. Coons and D. F. Gaines, Inorg. Chem., 1985, 24, 3774.
- 230. X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, I. MacPherson and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1987, 476.
- J. Bould, J. E. Crook, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc. Dalton Trans., 1984, 1903.
- 232. J. Bould, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc. Dalton Trans., 1984, 2477.
- N. N. Greenwood, M. J. Hails, J. D. Kennedy and W. S. McDonald, J. Chem. Soc. Dalton Trans., 1985, 953.
- M. A. Beckett, J. E. Crook, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc. Dalton Trans., 1984, 1427.
- 235. C. T. Brewer and R. N. Grimes, J. Am. Chem. Soc., 1985, 107, 3552.
- 236. T. P. Hanusa, J. C. Huffman, T. L. Curtis and L. J. Todd, Inorg. Chem., 1986, 24, 787.
- 237. J. J. Briguglio and L. G. Sneddon, Organometallics, 1986, 5, 327.

- 238. T. L. Venable, E. Sinn and R. N. Grimes, Inorg. Chem., 1982, 21, 887.
- 239. T. L. Venable, E. Sinn and R. N. Grimes, Inorg. Chem., 1982, 21, 904.
- 240. T. L. Venable, E. Sinn and R. N. Grimes, Inorg. Chem., 1982, 21, 895.
- B. Stibr, Z. Janousek, K. Base, J. Dolansky, S. Hermanek, K. Solntsev, L. A. Butman,
 I. I. Kuznetsev and N. T. Kuznetsov, *Polyhedron*, 1982, 1, 833.
- 242. G. K. Barker, N. R. Godfrey, M. Green, H. E. Parge, F. G. A. Stone and A. J. Welch, J. Chem. Soc. Chem. Commun., 1983, 277.
- G. K. Barker, M. Green, F. G. A. Stone and W. C. Wolsey, J. Chem. Soc. Dalton Trans., 1983, 2063.
- 244. Z.-T. Wang, E. Sinn and R. N. Grimes, Inorg. Chem., 1985, 24, 826.
- 245. Z.-T. Wang, E. Sinn and R. N. Grimes, Inorg. Chem., 1985, 24, 834.
- 246. D. G. Mema and J. H. Morris, J. Chem. Soc. Dalton Trans., 1985, 1903.
- M. A. Beckett, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1985, 1119.
- M. A. Beckett, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1986, 795.
- X. L. R. Fontaine, H. Fowkes, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1986, 547.
- 250. R. P. Micciche, J. J. Briguglio and L. G. Sneddon, Inorg. Chem., 1984, 23, 3992.
- N. N. Greenwood, M. J. Hails, J. D. Kennedy and W. S. McDonald, J. Chem. Soc. Dalton Trans., 1985, 953.
- R. T. Baker, M. S. Delaney, R. E. King, C. B. Knobler, J. A. Long, T. B. Marder,
 T. E. Paxson, R. G. Teller and M. F. Hawthorne, J. Am. Chem. Soc., 1984, 106, 2965.
- 253. W. C. Kalb, Z. Demidowicz, D. M. Speckman, C. Knobler, R. G. Teller and M. F. Hawthorne, *Inorg. Chem.*, 1982, 21, 4027.
- 254. P. E. Behnken and M. F. Hawthorne, Inorg. Chem., 1984, 23, 3420.
- L. Zheng, R. T. Baker, C. B. Knobler, J. A. Walker and M. F. Hawthorne, *Inorg. Chem.*, 1983, 22, 3350.
- J. A. Doi, E. A. Mizusawa, C. B. Knobler and M. F. Hawthorne, *Inorg. Chem.*, 1984,
 23, 1482.
- R. E. King, S. B. Miller, C. B. Knobler and M. F. Hawthorne, *Inorg. Chem.*, 1983,
 22, 3548
- M. P. Garcia, M. Green, F. G. A. Stone, R. G. Somerville, A. J. Welch and D. M. P. Mingos, J. Chem. Soc. Dalton Trans., 1985, 2343.
- 259. D. E. Smith and A. J. Welch, Organometallics, 1986, 5, 760.
- W. S. Rees, D. M. Schubert, C. B. Knobler and M. F. Hawthorne, J. Am. Chem. Soc., 1986, 108, 5367; 1987, 109, 2861.
- W. S. Rees, D. M. Schubert, C. B. Knobler and M. F. Hawthorne, J. Am. Chem. Soc., 1986, 108, 5369.
- M. Green, J. A. K. Howard, A. P. James, A. N. Jelfs, C. M. Nunn and F. G. A. Stone, J. Chem. Soc. Dalton Trans., 1987, 81.
- 263. M. Green, J. A. K. Howard, A. N. Jelfs, O. Johnson and F. G. A. Stone, J. Chem. Soc. Dalton Trans., 1987, 73.
- 264. Y. Do, C. B. Knobler and M. F. Hawthorne, J. Am. Chem. Soc., 1987, 109, 1853.
- 265. N. N. Greenwood and J. D. Kennedy in *Metal Interactions with Boron Clusters* (R. N. Grimes, ed.), Plenum Press, New York, Chap. 2, p. 43.
- 266. J. D. Kennedy, Prog. Inorg. Chem. 1984, 32, 519; lbid., 1986, 32, 211.
- J. E. Crook, N. N. Greenwood, J. D. Kennedy and W. S. McDonald, J. Chem. Soc. Dalton Trans., 1984, 2487.
- M. A. Beckett, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, Polyhedron, 1985, 4, 505.

- M. Elrington, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1986, 2277.
- H. Fowkes, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1986, 517.
- 271. M. A. Beckett, J. D. Kennedy and O. W. Howarth, J. Chem. Soc. Chem. Commun., 1985, 855. (This reference has been liberally quoted.)
- N. N. Greenwood, M. J. Hails, J. D. Kennedy and W. S. McDonald, J. Chem. Soc. Dalton Trans., 1985, 953.
- 273. X. L. R. Fontaine, H. Fowkes, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc. Chem. Commun., 1985, 1165.
- M. Bown, X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1987, 1169.
- M. Bown, X. L. R. Fontaine, N. N. Greenwood, P. MacKinnon, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Chem. Commun., 1987, 442.
- A. J. Wynd, S. E. Robbin, D. A. Welch and A. J. Welch, J. Chem. Soc. Chem. Commun., 1985, 819.
- G. Ferguson, M. Parvez, J. A. MacCurtin, O. N. Dhubhghaill, T. R. Spalding and D. Reed, J. Chem. Soc. Dalton Trans., 1987, 699.
- M. Elrington, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1987, 451.
- X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, P. I. MacKinnon and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1986, 1111.
- 280. J. A. Heppert, M. A. Kuzlik and D. F. Gaines, Inorg. Chem., 1984, 23, 14.
- 281. E. W. Corcoran and L. G. Sneddon, J. Am. Chem. Soc., 1984, 106, 7793.
- 282. J. Kroner and B. Wrackmeyer, J. Chem. Soc. Faraday Trans. 2, 1976, 72, 2283.
- J. A. Anderson, R. J. Astheimer, J. D. Odom and L. G. Sneddon, J. Am. Chem. Soc., 1984, 106, 2275.
- 284. E. W. Corcoran and L. G. Sneddon, J. Am. Chem. Soc., 1985, 107, 7446.
- Z. Janousek, J. Plesek, B. Stibr and S. Hermanek, Coll. Czech. Chem. Commun., 1983, 48, 228.
- 286. G. E. Herberich and H. Ohst, Adv. Organomet. Chem., 1986, 25, 199.
- 287. W. Siebert, Angew. Chem. Int. Ed. Engl., 1985, 24, 943.
- T. Kuhlman, S. Roth, J. Roziere and W. Siebert, Angew. Chem. Int. Ed. Engl., 1986, 25, 105.
- 289. G. Schmid, O. Boltsch, D. Blaser and R. Bose, Z. Naturforsch., 1984, 39b, 1082.
- G. Schmid, U. Hohner, D. Kampmann, D. Zaika and R. Bose, J. Organometal. Chem., 1983, 256, 225.
- G. Schmid, D. Kampfelman, U. Hohner, D. Blaser and R. Bose, Chem. Ber., 1984, 117, 1052.
- 292. W. Siebert, M. E. El-Essawi, R. Full and J. Heck, Z. Naturforsch., 1985, 40b, 458.
- 293. J. J. Eisch, J. E. Gallo and S. Kozima, J. Am. Chem. Soc., 1986, 108, 379.
- 294. G. E. Herberich, W. Boveleth, B. Hessner, M. Hostalek, D. J. P. Koffer, H. Ohst and D. Sohnen, Chem. Ber., 1986, 119, 420.
- G. E. Herberich, W. Boveleth, B. Hessner, M. Hostalek, D. J. P. Koffer and M. Negele, J. Organometal. Chem., 1987, 319, 311.
- 296. F. E. Herberich, B. Hessner and R. Saive, J. Organometal. Chem., 1987, 319, 9.
- 297. G. E. Herberich, W. Boveleth, B. Hessner, D. J. P. Koffer, M. Negele and R. Saive, J. Organometal. Chem., 1986, 308, 153.
- 298. G. E. Herberich and H. Ohst, Chem. Ber., 1985, 118, 4303.
- G. E. Herberich, U. Buschges, B. Hessner and H. Luthe, J. Organometal. Chem., 1986, 312, 13.

- 300. G. E. Herberich, B. Hessner, J. A. K. Howard, D. J. P. Koffer and R. Bose, Angew. Chem. Int. Ed. Engl., 1986, 25, 165.
- G. E. Herberich, J. Hengsbach, G. Huttner and U. Schubert, J. Organometal. Chem., 1983, 246, 141.
- 302. G. E. Herberich and H. Ohst, Z. Naturforsch., 1983, 38b, 1388.
- R. Boese, N. Finke, J. Henkelman, G. Maier, P. Paetzold, H. P. Reisenauer and G. Schmid, Chem. Ber., 1985, 118, 1644.
- 304. R. Boese, N. Finke, T. Keil, P. Paetzold and G. Schmid, Z. Naturforsch., 1985, 40b, 1327.
- 305. G. E. Herberich and A. K. Naithani, J. Organometal. Chem., 1983, 241, 1.
- G. E. Herberich, W. Boveleth, B. Hessner, W. Koch, E. Raabe and D. Schmitz, J. Organometal. Chem., 1984, 265, 225.
- 307. G. E. Herberich and D. Sohnen, J. Organometal. Chem., 1983, 254, 143.
- 308. G. E. Herberich, J. J. Becker and L. Zelenka, J. Organometal. Chem., 1985, 280, 147.
- J. Edwin, M. C. Bohm, N. Chester, D. M. Hoffman, U. Pritzkow, W. Siebert, K. Stumpf and H. Wadepohl, Organometallics, 1983, 1666.
- 310. K. Stumpf, W. Siebert, R. Koster and G. Seidel, Z. Naturforsch., 1987, 42b, 186.
- 311. J. Edwin, M. Bockman, M. C. Bohm, D. E. Brennan, W. E. Geiger, C. Kruger, J. Pebler, H. Pritzkow, W. Siebert, W. Swiridoff, H. Wadepohl, J. Weiss and U. Zenneck, J. Am. Chem. Soc., 1983, 105, 2582.
- 312. H. Wadepohl, H. Pritzkow and W. Siebert, Organometallics, 1983, 2, 1899.
- 313. M. Bochmann, K. Geilich and W. Siebert, Chem. Ber., 1985, 118, 401.
- 314. H. Wadepohl and W. Siebert, Chem. Ber., 1985, 118, 729.
- 315. H. Wadepohl and W. Siebert, Z. Naturforsch., 1983, 39b, 50.
- 316. T. Kuhlman and W. Siebert, Z. Naturforsch., 1984, 39b, 1046.
- 317. T. Kuhlman and W. Siebert, Z. Naturforsch., 1985, 40b, 167.
- 318. J. Edwin, W. Siebert and C. Kruger, J. Organometal. Chem., 1985, 282, 297.
- 319. W. J. Dell, P. J. Bray and S. Z. Xiao, J. Non-Cryst. Solids, 1983, 58, 1.
- 320. T. Templeton and R. K. MacCrone, J. Non-Cryst. Solids, 1983, 56, 387.
- 321. A. Magistris and G. Chiodelli, J. Power Sources, 1983, 9, 379.
- 322. I. A. Harris and P. J. Bray, Phys. Chem. Glasses, 1984, 25, 69.
- 323. M. Englesberg and N. M. Borges, J. Phys., 1984, C17, 3633.
- 324. S. Schramm and E. Oldfield, J. Chem. Soc. Chem. Commun., 1982, 980.
- 325. D. E. Hintenlang and P. J. Bray, J. Non-Cryst. Solids, 1985, 69, 243.
- 326. H.-U. Hurter, B. Krebs, H. Eckert and W. Muller-Warmuth, Inorg. Chem., 1985, 24, 1288.
- 327. I. A. Harris and P. J. Bray, Phys. Chem. Glasses, 1984, 25, 44.
- 328. R. K. Harris, A. Root and K. B. Dillon, Spectrochim. Acta, 1983, 39A, 309.
- 329. L. B. Ebert, D. R. Mills, J. C. Scanlon and H. Selig, Mater. Res. Bull., 1981, 16, 831.
- 330. L. B. Ebert and H. Selig, Synth. Metals, 1981, 3, 53.
- 331. A. J. Leffler, J. Chem. Phys., 1984, 81, 2574.
- 332. R. E. J. Sears, J. Chem. Phys., 1982, 76, 5651.
- 333. K. Kumagai and F. Y. Fradin, J. Magnetism Magnetic Matls., 1983, 31-33, 523.
- 334. P. Panissod, I. Bakonyi and R. Hasegawa, Phys. Rev. 1983, B28, 2374.
- 335. B. Krockert and P. Paetzold, Chem. Ber., 1987, 120, 631.
- 336. P. Jutzi, B. Krato, M. Hursthouse and A. J. Howes, Chem. Ber., 1987, 120, 565.
- 337. M. Yalpani, R. Boese and R. Koster, Chem. Ber., 1987, 120, 607.
- 338. S. Hermanek, T. Jelinek, J. Plesek, B. Stibr and J. Fusek, J. Chem. Soc. Chem. Comm., 1987, 927.

NMR Studies of Alkali Anions in Non-Aqueous Solvents

PETER P. EDWARDS, AHMED ELLABOUDY, DOLORES M. HOLTON and NICHOLAS C. PYPER

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

I.	Introduction	315
II.	Nuclear shielding in the alkali anions	318
	A. Assignment of the resonance	318
	B. Experimental nuclear shieldings relative to gaseous neutral atoms.	326
	C. Reliable calculations of nuclear-shielding differences for gaseous	
	alkali ions	327
	D. Deduction of the nature of M^- in solution	331
	E. Summary	332
III.	Solution structure of Na probed by nuclear relaxation measure-	
	ments	332
	A. Experimental results	332
	B. Theoretical considerations	334
	C. Quadrupolar relaxation	338
	D. Summary	346
IV.	Chemical dynamics in alkali-metal solutions	348
	A. The sodium anion	348
	B. Caesium-based species	357
V.	Overall conclusions	362
	References	364

1. INTRODUCTION

The chemistry¹ of the alkali elements is dominated by the occurrence of systems involving the alkali cation M⁺. However, during the past four decades experimental evidence has accumulated for the existence of alkali anions M⁻ in both gaseous and condensed phases.² In the alkali anions two electrons occupy the ns² valence orbital, the neutral atom having this orbital only singly occupied. The preparation and study of metal anions has its origins in investigations of metal–ammonia solutions, which were first examined by Sir Humphry Davy in 1807.³ Alkali metals dissolve in anhydrous liquid ammonia to yield, at very low metal concentration, solvated electrons and solvated alkali cations.⁴ As the metal content

is increased, these charged species aggregate to form a species of stoichiometry M whose spectral characteristics are remarkably insensitive to the particular alkali metal. Thus it has been inferred from ESR and NMR studies of metal–ammonia solutions that the electron (spin) density at the alkali nucleus in the species of stoichiometry M is as low as 1% of that in the corresponding gaseous ground-state atom. In slightly more concentrated solutions the possibility of interactions between the solvated electrons clearly arises. Magnetic-susceptibility experiments, first performed by Taylor and Lewis in 1925, reveal the presence of high concentrations of diamagnetic species. The precise structure of the spin-paired species in metal–ammonia solutions is still controversial, two possible contenders being the dielectron species e_2^{2-} (possibly in association with a cation) and the triple-ion species e_2^{--} (possibly in association with a vailable data for metal–ammonia solutions is the relative insensitivity of the spin-pairing process to the particular alkali metal used.

In marked contrast, a different situation occurs in solutions of alkali metals in amines and ethers. Here the experimental evidence is for the occurrence of distinct species whose properties are markedly dependent upon the alkali metal they contain.^{3,8} One striking example is the optical spectra of metal amine and ether solutions. In addition to an absorption due to the solvated electron, they show an intense metal-dependent band occuring at high energies.⁹ This optical absorption shifts to higher energies as the atomic number of the alkali metal decreases.¹⁰ A typical example, taken from Ref. 11, showing the optical absorption spectra of alkali metals in 12-crown-4 (12C4), is depicted in Fig. 1. The metal-, temperature- and solvent-dependences of these bands prompted Matalon, Ottolenghi and Golden¹² to suggest that the species responsible for spin pairing in alkaliamine solutions were alkali anions. Thus the optical transitions were charge-transfer-to-solvent (CTTS) bands, similar, in certain respects, to those observed for halide ions in solution.⁸

This postulation of alkali anions in non-aqueous solvents is not unreasonable when it is realized that these exist as stable species in the gas phase, having infinite lifetimes if left unperturbed. Indeed, the ionization potentials of the gaseous alkali anions, which are equal to the electron affinities of the corresponding neutral atoms, have been accurately measured from photodetachment experiments. However, in these metal solutions it was not possible to deduce the precise nature of the diamagnetic species M⁻ from just these optical studies. In addition, a major experimental problem was the relatively low solubility of alkali metals in these low-dielectric solvents. The situation was drastically changed in the early and mid-1970s by the seminal studies of Dye and coworkers. The use of crown ethers and cryptands as cosolvents with amines and ethers provided

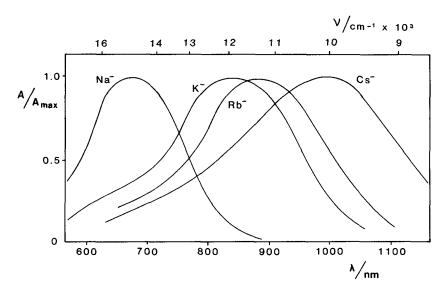


FIG. 1. Optical spectra (room temperature) of solutions of sodium, potassium, rubidium and caesium in 12-crown-4 (taken from Ref. 11 and used with permission).

the key to the preparation, isolation and identification of distinct alkali anions. Thus in 1974 Dye et al. 15,16 reported the first crystal structure of a salt containing the sodium anion and a complexed sodium cation. This work was closely followed by the first observation of the 23 Na NMR spectrum of Na $^-$ in fluid solutions of sodium metal in ethylamine in the presence of the cryptand C_{222} . More recently, Ellaboudy et al. have reported 23 Na magic-angle spinning NMR of crystalline salts of the sodium anion. The NMR spectra, in both liquid and solid states, have also been reported for species of stoichiometry K^- , 20,21 , $Rb^ ^{22-24}$ and Cs^- . 22,25

Recently attention has been focused on the use of liquid crown-ether solvents, whose structures are shown in Fig. 2, for the preparation of alkali anions. 11,23,26-28 It is known that these crown ethers form strong complexes with alkali cations. 19 The formation of such strong cationic complexes provides the driving force for the dissolution of alkali metals in these liquid crowns. This, coupled with the use of binary alkali-metal alloys, has led to the production of stable metal solutions containing high concentrations of alkali anions. 10 Moreover, the high concentrations of alkali-based species in these solutions have been exploited to carry out extensive magnetic resonance studies aimed at elucidating both the structure and microdynamical processes occurring in these metal solutions. 10 The primary aim of this review is to describe the progress that has been achieved

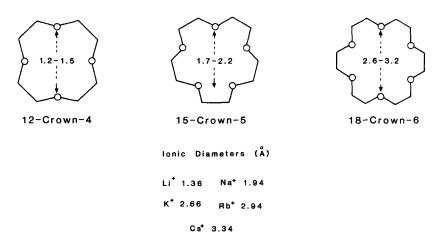


FIG. 2. A representation of the structures of 12-crown-4, 15-crown-5 and 18-crown-6. The dotted lines indicate the approximate cavity dimensions (as indicated).

to date in the study of alkali anions in liquid 12-crown-4 and 15-crown-5 (15C5).

II. NUCLEAR SHIELDING IN THE ALKALI ANIONS

A. Assignment of the resonance

The NMR spectra originating from the alkali-metal nuclei have been measured for a wide range of samples prepared by dissolving alkali metals in non-aqueous solvents. These signals have been observed from metal solutions prepared using both pure solvents^{23,26,28,30-32} and solvent mixtures. NMR spectra of these metal solutions, which show signals based on both the alkali cation and the alkali anion, are shown in Fig. 3. In the δ scale of shielding used in the figure, the NMR signal from a solution of an aqueous cation at infinite dilution has zero shift (δ = 0). The shifts relative to this origin (taken as reference R) have the same sign as the frequency shifts, a negative value of δ corresponding to a low-frequency shift and hence to an increase in the nuclear shielding. Thus one has δ = 10⁶ (v_S - v_R)/ v_R = σ_R - σ_S ; where v_R and v_S are respectively the reference and sample frequencies while σ_R and σ_S are the absolute values of the shielding (screening) constants of the same nucleus.

In Fig. 3 the very small deviation of the high-frequency signals from the reference enables the former to be unambiguously identified as arising from a cation-based species, i.e. one of stoichiometry M^+ . Furthermore, in all the

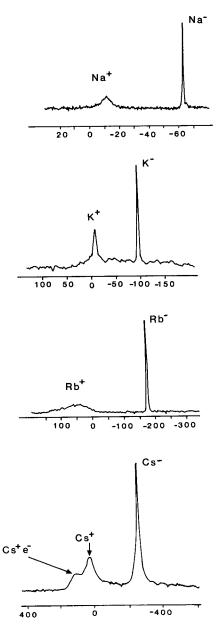


FIG. 3. ²³Na, ³⁹K, ⁸⁷Rb and ¹³³Cs NMR spectra from the cationic and ionic forms (M⁺ and M⁻) of the alkali metals in non-aqueous solutions containing crown ethers and cryptands: ²³Na, Ref. 18; ³⁹K, Ref. 20; ⁸⁷Rb, Ref. 24; ¹³³Cs, Ref. 25.

solutions prepared by dissolving Na or Cs metals, excepting those containing the complexing agent C_{222} , the deviations of the high-frequency signals from the appropriate reference are small. ^{22,30,32} It is thus clear that these signals also originate from some cation-based species. For the caesium solutions further experiments ²⁵ described in Section IV.B not only confirm that this is indeed the case, but also yield further information concerning these cation-based species. Although for the solutions prepared in the presence of the reagent C_{222} the high-frequency signals are not inconsiderably shifted from the reference (Table 1), these signals can again be assigned to a cation-based species, albeit one strongly complexed by a C_{222} molecule. The δ values of these cation signals are both temperature- and solvent-dependent (Table 1). This confirms the assignment to a cation-based species.

The NMR signals observed (Table 1) to low frequency of both the reference (R) and cation (M⁺) resonances, and therefore strongly shielded relative to the cation species in the same sample, could, in principle, arise from several different metal-based species. This large shielding relative to the M⁺ signal in the same sample means that one can immediately rule out some different, yet still cation-based, species. The chemical shifts of these non-cation-based species are found to be approximately temperatureindependent. Furthermore, their chemical shifts (listed in Table 1) are seen to be relatively insensitive to the solvent, this insensitivity being especially marked for the sodium case. This table also contains the NMR linewidths (full width at half maximum height, $\Delta v_{1/2}$), which are seen to be significantly narrower than those from the cationic signals in all the systems excepting Rb in 12C4. The temperature- and solvent-insensitivity of the shielded signals, coupled with their narrow linewidths, confirms that these resonances do not arise from a cation-based agglomerate, even in those systems for which no cation signal is observed.

One can envisage seven possible extreme limiting cases for the origins of these signals

- (i) A weighted time-average signal in the fast-exchange limit from a species of stoichiometry M⁻ and some other diamagnetic species.
- (ii) A loose triple ion in which two solvated electrons are complexed to a solvated cation.
- (iii) A spherically symmetrical dianion of the solvated cation. This is a species of stoichiometry M⁻ consisting of a central solvated cation surrounded by two electrons in a spherically symmetric orbital. However, since most of the electron density in this orbital is concentrated in spatial regions *outside* the solvent molecules complexed to the M⁺ cation, the orbital is very considerably expanded compared with the ns orbital in the isolated gaseous anion.

TABLE 1 NMR data for M^+ and M^- species ($M={}^{23}\mathrm{Na},{}^{39}\mathrm{K},{}^{87}\mathrm{Rb}$ and ${}^{133}\mathrm{Cs}$) in solution and solid states.

		Temperature	Cher	nical shift	Linewidth	
Species	Solvent		δ	$\sigma(S)$ – $\sigma(M)_g$	(Hz)	Ref.
Na ⁺ (NaCl)	H₂O	301	0	-60.5	14	33
(infinite dilution)						
Na ⁺ (NaCl)	H_2O	298	_	-60.5	5.2	22
Na ⁺ (NaCl)	D_2O	298	0	-60.5	32	30
Na ⁺ (NaCl)	H_2O	298		-61.2	8.0	22
(saturated solution)						
Na ⁺ (NaCl)	HMPA	274	3.9	-64.4	30	30
Na ⁺ (NaCl)	HMPA	298	3.8	-64.3	30	30
Na ⁺ (NaI)	EA	298	13.9	-74.4	17.9	22
Na ⁺ (NaI)	MA	258	11.7	-72.2	9.0	22
Na ⁺ (NaBPh ₄)	THF	298	-7.6	-52.9	23.0	22
Na ⁺ (NaBPh ₄)	DEA	203			3500	31
Na ⁺ (NaBPh ₄)	DEA	250	-2.8	-57.7	310	32
Na ⁺ (NaBPh ₄)	DEA	279	-2.2	-58.3	110	32
Na ⁺ C222	MA	258	-10.7	-49.8	30.8	22
Na ⁺ C222	EA	256-274	-9.7	-50.8	120-170	22
Na ⁺ C222	THF	269	-10.1	-50.4	51	22
Na ⁺ 18C6	THF	241	0	-60.5	_	22
Na ⁻	C222/MA	258	-61.9	1.4	11	22
Na ⁻	C222/EA	256-274	-62.1	1.6	6-9	22

269

-62.8

2.3

<3

22

C222/THF

Na-

 $TABLE \ 1 \ (cont.)$ NMR data for M⁺ and M⁻ species (M = $^{23}Na,\,^{39}K,\,^{87}Rb$ and $^{133}Cs)$ in solution and solid states.

15C5 18C6/THF

Rb+18C6, Na-

Cs+18C6, Na-

15C5/Me₂O

12C4/THF

Na+C222, Na-

Na-

Na⁻(Na) Na⁻

 $K^+(15C5)_2$

 $K^{-}(CsK)$

		_	Cher	nical shift	
Species	Solvent	Temperature (K)	δ	$\sigma(S)$ – $\sigma(M)_g$	Linewidth (Hz)
Na ⁻ (Na)	НМРА	263	-61.7	1.5	10
Na ⁻ (Na)	DEA	185	-62.3	1.8	45
Na (NaK)	DEA	203	-62.4	1.9	8
Na ⁻	DPA	213	-62.4	1.9	20
Na ⁻	DMP	231	-62.0	1.5	14
Na ⁻ (Na)	12C4	300	-61.8	1.3	10
Na-(NaK)	12C4	285-300	-62	1.5	2.7-3.2
Na-(NaRb)	12C4	285-310	-62	1.5	6.2-7.3
Na ⁻ (NaCs)	12C4	260-300	-62	1.5	1.9-1.0

220

250

-62

-59.6

-62.9

-61.3

-9.9

-98.2

1.5

-2.8

90 75

290

180

22

19

19

19

20

21

K-	15C5/Me ₂ O	220	-99.3	-1.7	20	
K-	K+(15C5) ₂ K~	180	-105	+4		
Rb ⁺	H ₂ O	298	1.1	-212.7	158	
	MeOH	298	-12.0	-199.6	300	
Rb+C222	H ₂ O	298	50.4	-262	1300	
Rb+C222	MeOH	298	88.4	-300	4000	
Rb-	EA	233	-185.4	-26.2	220	
Rb~	THF	227	-197.2	-14.4	15	
Rb-	12C4	300	-191.0	-20.6	1000	
Cs ⁺ (CsI)	H_2O	298	4.4	-348.4	3	
Cs ⁺ (CsI)	МеОН	298	-28.7	-315.3	3	
Cs+C222	THF	298	132.7	-476.7	30	
Cs+halide-	12C4	193	-4	-340	50	
Cs ⁺ (CsNa)	12C4/THF	198	-22.4	-321.6	95	
Cs ⁺ (CsNa)	12C4/THF	243	-26.4	-317.6	720	
Cs ⁺	12C4/THF	193	1.9	-345.9	50	
Cs ⁺	15C5/THF	193	109	-453	_	
Cs ⁻	C222/THF	202	_	-52.3	10	
Cs ⁻	12C4/THF	193	-300	-44		
Cs ⁻	15C5/THF	193	-280	64		

- (iv) The contact triple ion. This is a non-spherically symmetric state of an M⁻ species with two electrons located on opposite sides of a cation M⁺, this entire species then being solvated.
- (v) A solvated alkali anion. This is a distinct, spherically symmetric metal anion, either weakly or strongly interacting with the surrounding solvent but not with any cationic species.
- (vi) A spherically symmetric alkali anion M⁻ in a solvent-separated ion pair with some cationic species.
- (vii) A spherically symmetric alkali anion M⁻ in a contact ion-pair with some cationic species.

Figure 4 shows a representation of the structures envisaged as responsible in cases (ii)–(vii). Each of these seven possibilities is now discussed in turn; the first three can be eliminated for the reasons now presented.

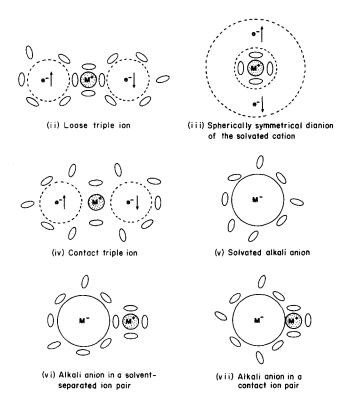


FIG. 4. Schematic representation of possible structures for the alkali anion in solution. The small ellipsoids represent solvent molecules.

Three arguments show that this low-frequency resonance does not arise from a time-average of the signal from a shielded species and a cation-based species, possibility (i). First, the observation of a distinct NMR signal from the metal cation in the spectra of the type shown in Fig. 3 trivially shows that the shielded signal does not involve an average with the observed cation signal. Secondly, the solvent-insensitivity of the resonance frequency of the shielded species suggests that, in those systems in which only this resonance is observed, it does not involve averaging with a cation-based signal. Thirdly, the shielded signals in the liquid-state samples occur at resonant frequencies close to those observed (Table 1) in the solid state from species of stoichiometry M⁻. These solid-state spectra show signals attributable to M⁻ as well as deshielded signals attributable to M⁺.

The metal-based entity (ii) is generally held responsible for the spinpairing present in metal-ammonia solutions. A considerable solvation of both electrons and cations occurs, and both electron spins are correlated (possibly via a superexchange-type interaction through the cation) to give a singlet electronic ground state located at an energy some 0.4 eV below the triplet excited state. The chemical shift of this triple-ion species would be so similar to that of the M⁺ cation that the former can be ruled out as a contender for the observed signal (Fig. 3).

The dianion of the solvated cation (iii) could be envisaged as arising as the limit of the process in which the two electrons in the loose triple ion are delocalized into a spherically symmetric orbital still encompassing both the M⁺ cation and its first solvation sheath. The metal NMR characteristics of this species would be even more similar to those of the solvated cation; hence one can dismiss the dianion of the solvated cation as a source of the NMR signal.

In order to distinguish between the contact triple ion (iv) and the solvated alkali anion (v), one needs to compare the observed chemical shift with that of a gaseous alkali anion as described in the next section. The presence or absence of ion pairs involving the solvated anion, (vi) and (vii), can be deduced by combining nuclear spin-lattice relaxation measurements with the rates of quadrupolar relaxation estimated from a simple electrostatic model. This is described in Section III.C.2.

It should be pointed out, however, that one can envisage passing continuously from the loose triple ion (ii) to the contact triple ion (iv) by moving the electrons towards the nucleus while simultaneously moving the solvation sheath away from the alkali cation. By a similar process, one can pass continuously from the dianion of the solvated cation (iii) to a free or weakly solvated spherically symmetric alkali anion (v). It is interesting to note that one can also envisage passing continuously from the spherically symmetric anion (v) to the contact triple ion (iv). Theoretical calculations³³

predict the existence of excited np² configurations of the alkali anions; the electronic charge distribution in the contact triple ion (iv) is qualitatively similar to that of the ¹D state of the np² excited electronic configuration.

Information concerning the location of the species of stoichiometry M⁻ in the continuous passage to (v) from both (iii) and (iv), as well as the strength of the interaction of the alkali anion (v) with its environment, can only be deduced from a detailed consideration of its chemical shift³⁴ and nuclear-relaxation²⁶ behaviour. In particular, one might expect that the nuclear-relaxation rates for a quadrupolar nucleus will decrease on passing from the non-spherically symmetric contact triple ion (iv) to the spherically symmetric gas-like anion (v). This approach of gleaning information about the microscopic structure of the species from relaxation measurements is described in Section III. In the following section we focus on the information to be obtained from nuclear-shielding considerations.

B. Experimental nuclear shielding relative to gaseous neutral atoms

Optical-pumping, 35,36 atomic-beam 37 and NMR techniques $^{38-41}$ have established the shielding constants $\sigma(M^+)_{aq}$ of the aqueous cations 23 Na $^+$, 39 K $^+$, 87 Rb $^+$ and 133 Cs $^+$ at infinite dilution relative to those of the corresponding gaseous metal atoms, $\sigma(M)_g$, with an accuracy of around 2%. We note that, as far as we can ascertain, NMR shielding constants for M $^+$ are uncorrected for bulk-susceptibility effects. All of these alkali-cation resonances are deshielded (paramagnetically shifted) from those of the respective gaseous atoms by the values given in Table 2. These shielding differences are important in the present context since the aqueous solutions are the standard relative to which the shielding of the alkali containing species in solution is usually measured. 18,22,23 Hence the shielding of the anion in solution (uncorrected for solution bulk susceptibility), relative to that of the gaseous metal atom, can be measured experimentally.

TABLE 2

Experimentally derived shieldings of solvated aqueous cations at infinite dilution relative to those of the gaseous atoms.

Nucleus	$\sigma(M)_g - \sigma(M^+)_{aq(\infty)}$
²³ Na	60.5 ± 1
³⁹ K	101 ± 5
⁸⁷ Rb	211.6 ± 1.2
133Cs	344 ± 5.8

The shieldings $\sigma(S)$ of the species listed in Table 1 relative to the corresponding gaseous metal atoms are reported in the fifth column of this table. These experimental chemical-shift differences $\sigma(S) - \sigma(M)_g$ were derived from the shielding differences of column 4 of Table 1 by subtracting the shielding differences of Table 2. It should be noted that errors in Table 2 are necessarily propagated into the results assembled in the fifth column of Table 1.

The shielding differences relative to gaseous atoms (Table 1, column 5) are more readily interpreted theoretically than the corresponding shieldings relative to those of the solvated aqueous alkali cations. Indeed, it is well known that cation—water interactions in aqueous solutions cause the cation NMR signals to be very significantly deshielded (paramagnetically shifted) relative to those of the free cation. Similarly one would anticipate a significant paramagnetic shift of the NMR signal originating from the contact triple ion (iv) due to the asymmetric nature of the electronic charge distribution. The failure of the NMR signals from the species of stoichiometry M⁻ to display paramagnetic shifts of the magnitudes displayed by the solvated cations strongly suggests that contact triple ions are not responsible for the low-frequency NMR signals.

The nature of the alkali-metal anion in solution can only be deduced if reliable values are known for the nuclear-shielding difference $\Delta\sigma_g^{(-)}(M)$ between the shielding for the gas-phase anion, $\sigma(M^-)_g$, and that, $\sigma(M)_g$, of the neutral alkali-metal atom. The shielding $\sigma(M^-)_g$ for the closed-shell species M^- is defined to be positive as implied by the expression provided by the Ramsey theory of nuclear shielding, 42 so that

$$\Delta \sigma_{\mathbf{g}}^{(-)}(\mathbf{M}) = \sigma(\mathbf{M}^{-})_{\mathbf{g}} - \sigma(\mathbf{M})_{\mathbf{g}}. \tag{1}$$

However, it is shown in the next section that these shielding differences can be accurately calculated by adding the predictions computed from non-relativistic atomic Hartree–Fock wavefunctions to the (much smaller, but non-zero) contributions from electron–electron correlation. The latter can reliably be derived^{34,43} from experimental data. Information concerning the alkali anion in solution is derived by comparing the gaseous shielding differences (1) with the experimental solution values listed in the fifth column of Table 1.

C. Reliable calculations of nuclear-shielding differences for gaseous alkali ions

In the Ramsey theory⁴² the total shielding of a nucleus is the sum of a diamagnetic part and a paramagnetic part. The paramagnetic contribution to the shielding of any isolated atomic S state vanishes if the gauge origin is

chosen at the nucleus.⁴⁴ The total shielding $\sigma(S)$ of species S is equal to the diamagnetic contribution given in the point-charge point-dipole description of the nucleus in non-relativistic theory by

$$\sigma(S) = \frac{1}{3c^2} \left\langle \Psi_S(r_1, r_2, \dots, r_N) \middle| \sum_{i=1}^{N} r_i^{-1} \middle| \Psi_S(r_1, r_2, \dots, r_N) \right\rangle.$$
 (2)

Here $|\Psi_S(r_1, r_2, ..., r_N)\rangle$ is the exact wavefunction for the *N*-electron system (S) and *c* is the velocity of light in atomic units (≈ 137).

Since the exact wavefunction cannot presently be accurately computed for atoms containing more than an extremely small number of electrons, it is useful to define the Hartree–Fock contribution $\sigma_{\rm HF}(S)$ to the shielding as that predicted by replacing the exact wavefunction by the Hartree–Fock wavefunction in (2). This wavefunction can be simply and exactly computed for all atoms by using a numerical Hartree–Fock program. The difference between the exact and Hartree–Fock shielding defines the correlation contribution $\sigma_{\rm corr}(S)$ through

$$\sigma(S) = \sigma_{HF}(S) + \sigma_{corr}(S). \tag{3}$$

This separation is useful not only because $\sigma_{\rm corr}(S)$ is only a small fraction of $\sigma(S)$, but also because $\sigma_{\rm corr}(S)$ can be related, ^{34,43,47,48} by using the Hellmann–Feynman theorem, to the nuclear-charge dependence of the correlation energy; thus

$$\sigma_{\rm corr}(S) = -\frac{1}{3c^2} \left(\frac{dE_{\rm corr}(Z)}{dZ} \right)_{Z = Z_S},$$
 (4)

where the correlation energy $E_{\rm corr}(Z)$ of the system having nuclear charge Z and isoelectronic with S is the exact non-relativistic energy minus that predicted in the non-relativistic Hartree-Fock approximation. In (4) $Z_{\rm S}$ is the nuclear charge of the system S.

An expression for the difference $\Delta \sigma(S)$ between the shielding of S and that, $\sigma(S_1)$, of the system (S_1) obtained by ionization of one electron from S is derived^{34,43} by subtracting the results (3) and (4) for the total shieldings. The result is

$$\Delta \sigma(S) = \sigma(S) - \sigma(S_1) = \Delta \sigma_{HF}(S) + \Delta \sigma_{corr}(S)$$
 (5)

$$= \Delta \sigma_{HF}(S) + \frac{1}{3c^2} \left(\frac{dI_{corr}(Z)}{dZ} \right)_{Z = Z_s},$$
 (6)

where $I_{\rm corr}(Z)$ is the contribution, arising from electron correlation, to the ionization potential for the removal of an electron from the system of nuclear charge Z and isoelectronic with S to yield a system isoelectronic

with S_1 . The result (6) is useful because the quantities $I_{corr}(Z)$ can be evaluated34,43 from experimental ionization potentials. Thus, after subtracting from each experimental ionization potential the small corrections that are computed to arise from relativistic effects and nuclear motion, one has the best available estimate of each ionization potential predicted from the exact non-relativistic wavefunction. The difference between this prediction and the ionization potential computed from the non-relativistic Hartree-Fock wavefunction is the correlation contribution $I_{corr}(Z)$ to the ionization potential required in (4). The derivatives of $I_{corr}(Z)$ with respect to Z are evaluated numerically from the four isoelectronic ionization processes in the alkali metals, the alkaline earths and the group IIIA and group IVA elements. The dominant source of error in the $\Delta \sigma_{corr}(S)$ values arises from uncertainties in the numerical procedures used to evaluate the derivatives; these small numerical uncertainties have been discussed in detail elsewhere. 34,43 These errors can be estimated to be approximately ± 0.03 ppm by comparing the results of different numerical procedures.

The Hartree-Fock contributions $\Delta \sigma_{HF}(S)$ to the shielding differences $\Delta \sigma(S)$ have been calculated as the difference between the total shielding $\sigma_{HF}(S)$ and $\sigma_{HF}(S_1)$ of S and S_1 computed by using the Hartree-Fock approximation to (2):

$$\Delta \sigma_{HF}(S) = \sigma_{HF}(S) - \sigma_{HF}(S_1). \tag{7}$$

For the case where S is an alkali-metal anion (i.e. $S = M^-$), so that $S_1 = M$ (the neutral alkali atom), the shielding difference $\Delta\sigma(M^-)$ defined by (5) is $\Delta\sigma_g^{(-)}(M)$ defined by (1). For the case S = M and $S_1 = M^+$, $\Delta\sigma(S)$ defined by (5) becomes $\Delta\sigma_g^{(+)}(M)$. Since the numerical errors in Hartree–Fock values $\Delta\sigma_{HF}(S)$ will be 10^{-5} ppm at most, the accuracy of the calculated values of $\Delta\sigma_g^{(+)}(M)$ is determined by the errors $(\pm\,0.03\,\text{ppm})$ in the correlation contribution.

The total computed shielding differences 34,43 $\Delta\sigma_{\rm g}^{(+)}({\rm M})$ and $\Delta\sigma_{\rm g}^{(-)}({\rm M})$ for the alkali-metal series Li to Cs are presented in Table 3. These results show that for each metal the contribution from electron-electron correlation, i.e. the difference between the exact result and the Hartree-Fock value (reported in parentheses), is small but not negligible. These calculations illustrate four points.

(i) The total shielding constants $\sigma(M^+)_g$, $\sigma(M)_g$ and $\sigma(M^-)_g$, of which the numbers in Table 3 are differences, are themselves very large, e.g. $\sigma(Cs)_g = 5780.2$ ppm. However, the overwhelming contribution in both cases arises from the core electrons, which make very similar contributions in M^+ , M and M^- . However, these core contributions do not cancel exactly. The core of each neutral atom is slightly contracted relative to that of the anion, thus

	TABLE 3	
Computed	shielding of gaseous alkali alkali anions relative to gaseo	J
Metal (M)	$\sigma(M^+)_a - \sigma(M)_a{}^b$	$\sigma(M^-)_a - \sigma(M)_a{}^c$

Metal (M)	$\sigma(M^+)_g - \sigma(M)_g^b$	$\sigma(M^-)_g - \sigma(M)_g^c$
Li	-6.07 (-6.046)	3.14 (2.743)
Na	-5.18(-5.089)	2.88 (2.583)
K	-4.08(-3.933)	2.38 (2.122)
Rb	-3.77(-3.593)	2.27 (1.995)
Cs	-3.31(-3.169)	2.08 (1.801)

^a All results in ppm. Results not in parentheses are non-relativistic, but include effects of electron correlation. Errors arising from the correlation calculation are 0.03 ppm. Hartree-Fock results in parentheses are accurate to all figures quoted.

causing the core shielding difference to contribute minutely but negatively to $\Delta \sigma_{g}^{(-)}(M)$ to the extent of less than 0.004 ppm.

- (ii) The values decrease smoothly as one proceeds down the group IA elements solely because the valence orbital, whose occupation varies from 0 to 2 as one goes from cation to neutral to anion, becomes more diffuse. It should be noted that the smooth variation in $\Delta\sigma_g^{(-)}(M)$ down the series (Table 3) contrasts markedly with the values $(\Delta\sigma_g^{(-)}(Rb) = 54.7 \, \mathrm{ppm}; \Delta\sigma_g^{(-)}(Cs) = 232.1 \, \mathrm{ppm})$ that would be deduced by taking the difference between the total shieldings estimated from a simple analytic function constructed to reproduce the known Hartree–Fock shieldings in much lighter systems. The inappropriateness of using these estimates to calculate the small shielding differences of interest here has been fully discussed elsewhere.
- (iii) The values of $\Delta \sigma_g^{(+)}(M)$ are much smaller than the experimental values of the shieldings $\sigma(M^+)_{aq}$ of the solvated aqueous cations measured relative to those of the gaseous metal atoms. This confirms the large solvent-induced paramagnetic deshieldings of these ions in aqueous solution.
- (iv) For K, Rb and Cs the results of various atomic-beam magnetic resonance experiments have been combined to produce experimental values for $\Delta\sigma_{\rm g}^{(+)}({\rm M})$. For Rb the experimental result⁵⁰ of 3.8 ± 2.6 for $\Delta\sigma_{\rm g}^{(+)}({\rm Rb})$ agrees well with the theoretical value of $3.77\,{\rm ppm}$, although the errors on the experimental value are not inconsiderable. However, it has been pointed out elsewhere⁴³ that the reported experimental values

^b From Ref. 43.

^c From Ref. 34.

of $\Delta \sigma_{\rm g}^{(+)}({\rm K})^{51}$ and $\Delta \sigma_{\rm g}^{(+)}({\rm Cs})^{52}$ are not credible and that these experiments need to be reexamined.

D. Deduction of the nature of M⁻ in solution

Information concerning the nature of M^- in solution can be obtained by comparing the experimental shieldings of the alkali anions in solution reported in Table 1 (measured relative to the shielding of the gaseous atom) with the theoretical predictions for the gaseous anions (Table 3). It should also be noted that the experimental numbers in Table 1 have not been corrected for the bulk susceptibilities of the respective solutions. For solutions of sodium in hexamethylphosphoramide (Table 1), the volume susceptibility has been measured⁵³ to be -0.5×10^{-6} cgs units, and incorporation of this correction yields³⁴ a "true" experimental value of $\Delta \sigma^{(-)}$ (Na) of 2.5 ppm, a correction of some 1 ppm to the measured nuclear-shielding difference.

Clearly for the sodide ion, the observed nuclear-shielding differences $(\Delta\sigma^{(-)}(Na), Table 1)$ in the various metal solutions are, within experimental error (± 1 ppm, see preceding comments), identical with that (2.88 ppm) calculated for the species $^{23}Na^-$ in the gas phase. This, coupled with the remarkable insensitivity of $\Delta\sigma^{(-)}(Na)$ to the nature of the solvent in all systems examined, shows that the 2p orbitals are well screened from interactions with surrounding solvent or solute molecules by the presence of the filled 3s valence orbital, which itself is unaffected by its environment.

In contrast, the NMR signals of $^{87}\text{Rb}^-$ and $^{133}\text{Cs}^-$ in solution are very significantly deshielded relative to those of the corresponding gaseous atoms, as shown by the negative values of $\Delta\sigma^{(-)}(M)$, reported in Table 1. The combination of these results with the reliable calculated values of $\Delta\sigma_g^{(-)}(M)$ shows that the Rb⁻ and Cs⁻ ions in solution are deshielded relative to the gaseous anions, although their deshielding with respect to the gaseous atoms is even more significant. In addition, the observed $\Delta\sigma^{(-)}(Rb)$ values show a solvent dependence in both the two- and three-component solutions. It is interesting to note, however, the similarity in shifts for $^{87}\text{Rb}^-$ solutions of Rb in THF with added C_{222} (three-component metal solution) and solutions of Rb in the liquid crown 12C4 (a two-component system), both polycyclic ether solvents. This is to be contrasted with the significant influence that the presence of C_{222} has on the shielding of cationic Rb, Rb⁺ (Table 1). The negative experimental values of $\Delta\sigma^{(-)}(Rb)$ suggest that the ground-state wave function of the $^{87}\text{Rb}^-$ ion is very considerably modified by the presence of the solvent.

The significant deshielding of both Rb and Cs signals could arise from two different factors. First, one can regard the anion as being of the type (v)

(Fig. 4), although the interaction with external solvent molecules has become sufficiently strong that it removes the spherical symmetry of the anion. Under these circumstances, where there is a slight asymmetry in the charge distribution, one can expect a non-negligible deshielding arising via the well-known mechanism that, for example, deshields solvated alkali cations. Secondly, the high-frequency shifts could arise if the true electronic structure of the species were intermediate between that (iii) (Fig. 4) of the dianion of the solvated cation and the spherically symmetric anion (v). Thus as one passes from (v) to (iii) the electronic structure acquires some of the character of that of the solvated cation. Since the signals from such cations are known to exhibit large high frequency shifts (Table 1) the observed deshieldings²²⁻²⁵ of the Rb⁻ and Cs⁻ ions could thereby be explained.

The results 20,21 for $^{39}K^-$ in solution suggest that this metal anion is considerably more gas-like than the rubidium anion, certainly in the liquid crown systems. However, the $^{39}K^-$ ion does clearly suffer certain small perturbations on its gas-phase electronic structure. This can be gauged from the chemical-shift data in Tables 1 and 3, which indicate a small degree of deshielding in $^{39}K^-$ as compared with the gas-phase anion.

E. Summary

The nuclear-shielding differences between alkali anions and neutral atoms can now be calculated reliably by combining Hartree–Fock predictions with electron–electron correlation corrections derived from experimental ionization potentials. The close similarity between the calculated values and those measured in experiments on $^{23}{\rm Na}^-$ suggests that this species exists in solution as an essentially gas-like anion only weakly coupled to its environment. The large and negative experimental values for $\Delta\sigma^{(-)}({\rm Rb})$ and $\Delta\sigma^{(-)}({\rm Cs})$ for Rb $^-$ and Cs $^-$ in solution suggest that these species are significantly modified upon passing from the gaseous to the condensed phase.

III. SOLUTION STRUCTURE OF Na⁻ PROBED BY NUCLEAR RELAXATION MEASUREMENTS

A. Experimental results

The measured²⁶ spin-lattice relaxation times $T_{\rm ln}$ for Na⁻ in 12C4 as a function of concentration, temperature and counterion are assembled in Table 4. The ¹H and ¹³C relaxation times for pure 12C4 are also included. The $T_{\rm ln}$ data for this entire series of Na⁻ samples is also shown in Fig. 5.

TABLE 4 Measured spin-lattice relaxation time (T_{in}) and activation energies (E_a) .

System	$[Na^-]^a/$ $mol dm^{-3}$	Nuclei	T_{1n}/ms^b	E _a /kJ
Pure 12C4		¹H	175 (273), 289 (283), 376 (293), 490 (303), 760 (317)	23.1
Pure 12C4		¹³ C	267 (273), 384 (283), 552 (293), 765 (303), 1090 (317)	23.4
NaRb/12C4	0.0065	²³ Na	271 (290), 300 (295), 340 (300)	18.4
NaCs/12C4	0.015	²³ Na	230 (290), 258 (295), 314 (300)	22.5
NaK/12C4	0.050	²³ Na	151 (280), 202 (290), 244 (300)	19.7
NaK/12C4	0.110	²³ Na	164 (290), 188 (295), 215 (300), 245 (305), 285 (310)	20.5
NaCs/12C4	0.140	²³ Na	112 (285), 136 (290), 167 (295), 210 (300)	27.9
NaRb/12C4	0.165	²³ Na	110 (285), 129 (290), 155 (295), 177 (300), 196 (305), 202 (310)	22.9
NaK/12C4	0.170	²³ Na	99 (280), 141 (290), 187 (300)	22.2

 $[^]a$ Na $^-$ concentrations measured by integration of NMR signal. b Values in parentheses represent the temperature at which $T_{\rm in}$ is measured.

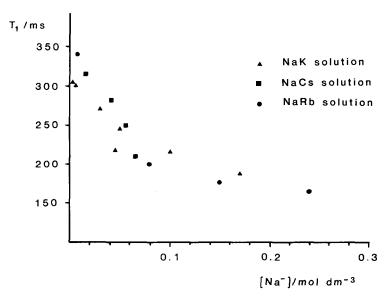


FIG. 5. ²³Na spin-lattice relaxation times as a function of Na⁻ ion concentration for a variety of sodium-metal solutions in 12C4 (taken from Ref. 26 and used with permission).

It has been found²⁶ that, for a given metal solution, the effect of metal concentration on T_{1n} is small: increasing the concentration of Na⁻ in NaK/12C4 solutions by a factor of 57 only causes a drop in the value of T_{1n} of less than a factor of 3. This change is most probably attributable to the increase in viscosity of the concentrated solutions. For a given metal concentration, the spin-lattice relaxation time is virtually independent of the nature of the counterion. Arrhenius plots of the temperature dependence of T_{1n} have been used²⁶ to determine the activation energy E_a for the nuclear spin-lattice relaxation process in the metal solutions. Similarly, the activation energy and the appropriate correlation time for the neat solvent have been derived from the ¹H and ¹³C spin-lattice relaxation data. The resulting activation energies, summarized in Table 4, show the activation energy for Na relaxation in 12C4 solution via the T_{1n} process to be the same as that for the neat solvent. Furthermore, the data show the activation energy to be essentially independent of both concentration and countercation.

The field dependence of T_{1n} was checked²⁶ on one NaK/12C4 sample. The relaxation rates were found to be the same at 23.8 MHz (90 MHz proton frequency) and 66.1 MHz (250 MHz proton frequency). Also, decoupling the protons was found to have no effect on either the intensity of the Na⁻ signal or on the measured relaxation time.

B. Theoretical considerations

1. Background

The interactions causing nuclear spin-lattice relaxation may be classified as either of one of two types depending on whether they involve coupling between the nuclear magnetic dipole moment and perturbing magnetic fields ("magnetic relaxation") or coupling between the nuclear electric quadrupole moment and fluctuating electric field gradients ("quadrupolar relaxation"). These two interactions have been considered in detail as possible spin-lattice relaxation mechanisms for the sodium anion in 12C4 solutions. The same arguments may apply also to other metal solutions that have viscosities significantly lower than that of 12C4.

It should be noted that, although the rotational correlation time calculated using the Debye equation is not quantitatively accurate, ⁵⁴ it has nevertheless been used to demonstrate that the extreme narrowing condition ($\omega_o \tau_c < 1$) is satisfied for the ²³Na resonances in both 12C4 as well as the solvents of lower viscosity. Here ω_o is the appropriate (nuclear) precession frequency and τ_c is a characteristic correlation time governing nuclear relaxation. Use of the measured viscosity (9.98 cP) of 12C4 coupled

with an estimate of $3.0\,\text{Å}$ for the radius of 12C4 yielded a rotational correlation time of $2.25\times10^{-10}\,\text{s}$. Use of the alternative form of the Debye equation in which the appearance of the molecular radius is replaced by that of the molar volume gave a correlation time of $2.22\times10^{-10}\,\text{s}$. Use of the larger value of τ_c showed $\omega_o\,\tau_c$ to be 0.03, thereby demonstrating the extreme narrowing condition is satisfied. The magnetic-field independence of the spin relaxation provided further evidence that this condition is fulfilled.

2. Magnetic relaxation

Fluctuating magnetic fields at the ²³Na nucleus responsible for any magnetic relaxation could originate from the nuclear spins of surrounding species, from the spins of unpaired electrons, from the anisotropy of the ²³Na nuclear-shielding tensor, or from spin-rotation interactions. The latter two mechanisms can only operate in a "strong-complex solvation model" in which the sodium anion is so strongly complexed to another species that the entire complex reorientates as a single rigid body. In the event that the second species is a cation, one has the contact ion pair introduced in Section II as possibility (vii) for the solution structure of Na⁻, while the solvent-separated ion pair, the possibility (vi), would arise if the second body were to consist of a solvent molecule plus a cation.

In the "strong-complex solvation model" the dipole–dipole relaxation is caused by the modulation, arising from reorientation of the entire complex, of the through-space dipolar coupling between the Na⁻ nuclear spin and the nuclear spins of the complexed species. In the extreme-narrowing limit, applicable here, the rate $(T_{\text{INa}}^{\text{DDR}})^{-1}$ of ²³Na spin–lattice relaxation caused by dipolar coupling to n_p protons is given by

$$(T_{1Na}^{DDR})^{-1} = \gamma_{Na}^2 \gamma_H^2 r_{NaH}^{-6} \hbar^2 \tau_c(\text{comp}) n_p, \tag{8}$$

where γ_X is the gyromagnetic ratio of nucleus X, r_{XY} is the distance between the nuclear spins X and Y, while $\tau_c(\text{comp})$ is the correlation time for the reorientational motion responsible for the nuclear relaxation. The unknown distance r_{NaH} will be of the order (3.40 Å) of the sum of the van der Waals radius (1.2 Å) of a hydrogen atom plus the ionic radius (2.2 Å) of the sodium anion deduced from the crystal structure of Na⁺C222.Na⁻. The use of the covalent radius (0.28 Å) of hydrogen will almost certainly yield an underestimate (2.84 Å) for r_{NaH} . The Debye equation suggests that the correlation time $\tau_c(\text{comp})$ for the entire complex in a solution of 12C4 can be related to the rotational correlation time $\tau_c(\text{solv})$ of the pure solvent through

$$\tau_{\rm c}(\text{comp}) = \tau_{\rm c}(\text{solv}) \left(a_{\text{comp}} / a_{\text{solv}} \right)^3, \tag{9}$$

where $a_{\rm comp}$ and $a_{\rm solv}$ are the radii of the complex and a single 12C4 molecule respectively. Although these parameters must clearly be subject to some uncertainty, use of standard values of C—C, C—O, C—H bond lengths and bond angles yields, after elementary trigonometry, the value $a_{\rm solv}=3.0\,{\rm \AA}$ and hence $a_{\rm comp}=5.20\,{\rm \AA}$. Two values for the correlation time $\tau_{\rm c}({\rm solv})$ can also be deduced from the $^1{\rm H}$ and $^{13}{\rm C}$ spin–lattice relaxation times of pure 12C4 reported in Table 4. If the $^1{\rm H}$ relaxation is taken to arise entirely from the dipolar coupling between pairs of protons bonded to the same carbon atom, and the $^{13}{\rm C}$ relaxation is assumed to arise solely from dipolar coupling to the two protons to which it is directly bonded, then the rates $(T_{\rm 1solv}^{\rm DDH})^{-1}$ and $(T_{\rm 1solv}^{\rm DDC})^{-1}$ of $^1{\rm H}$ and $^{13}{\rm C}$ spin–lattice relaxation are given by

$$(T_{\text{1solv}}^{\text{DDH}})^{-1} = \frac{3}{2} \gamma_{\text{H}}^{4} r_{\text{HH}}^{-6} \hbar^{2} \tau_{\text{c}}(\text{solv}), \tag{10}$$

$$(T_{\text{looly}}^{\text{DDC}})^{-1} = 2\gamma_{\text{C}}^2 \gamma_{\text{H}}^2 r_{\text{CH}}^{-6} \hbar^2 \tau_{\text{c}}(\text{solv}). \tag{11}$$

Combination of these equations with the value for $r_{\rm HH}$ deduced from $r_{\rm CH} = 1.073 \, {\rm \AA}$ assuming perfect tetrahedral hybridization yields $\tau_{\rm c}({\rm solv}) = 0.92 \times 10^{-10}$ and $0.38 \times 10^{-10} \, {\rm s}$ respectively, from the ¹H and ¹³C relaxation times at 293 K. Since the observed relaxation rates may have contributions neglected in the derivation of (10) and (11), these two values will be upper limits for τ_c (solv). However, these values are consistent with those deduced from the measured viscosity using the Debye equation. Use of the larger value of $\tau_c(\text{solv})$ in (9) yields $\tau_c(\text{comp}) = 4.79 \times 10^{-10} \, \text{s}$, from which the value $(T_{1\text{Na}}^{\text{DDR}})^{-1} = 0.008 n_p \, \text{s}^{-1}$ is deduced from (8), taking r_{NaH} to be 3.40 Å. The results show that in the "strong-complex solvation" model" ²³Na-¹H dipolar coupling in the present system could not contribute significantly to the observed relaxation rate since n_p , the number of interacting protons, would have to be unrealistically large, namely of the order of 300-900, which corresponds to 20-55 crown molecules at a distance of 3.40 Å. Evidence for the reliability of this estimate of $(T_{1\text{Na}}^{\text{DDR}})^{-1}$ is provided by comparing observed and calculated rates of ⁷Li dipole-dipole relaxation in aqueous LiCl, for which the "strong-complex solvation model" is known to be appropriate. If the Li⁺-O distance in the Li⁺-water complex is taken to be 2.0 Å by analogy with the Li-O²⁻ distance of 1.977 Å⁵⁶ in solid Li₂O, then the ⁷Li-¹H internuclear distance is calculated to be 2.694 Å. The correlation time $(2.7 \times 10^{-12} \text{ s})^{57}$ of pure water at 25 °C shows, using a relation of the type (9) that the correlation time for the Li⁺-water complex is 1.56×10^{-11} s if the radii of the complex and of a water molecule are taken to be 2.694 Å and 1.5 Å respectively. If each Li⁺ is tetrahedrally coordinated by water molecules then the relation of the type (8) predicts the rate of ⁷Li dipole-dipole relaxation to be 0.028 s⁻¹, in qualitative agreement with

the experimental value extrapolated to infinite dilution of $0.0352\,\mathrm{s^{-1}}.^{58}$ Furthermore, a contribution of $0.0089\,\mathrm{s^{-1}}$ is estimated to arise from the translational motion of water molecules outside the first solvation shell, leaving a contribution of $0.0268\,\mathrm{s^{-1}}$ to arise from the reorientation of the complex. The estimation via (9) of the rotational correlation time of the complex from an experimental correlation time of a related species in the same solvent has the advantage of not relying on the precise values of the constants of proportionality entering the Debye equation.

In the "weak solvation model" the modulation of the 23Na-1H dipole-

In the "weak solvation model" 59,60 the modulation of the 23 Na $^{-1}$ H dipoledipole coupling responsible for the relaxation arises from the relative translation motion of free sodium anions and independent 12C4 solvent molecules. An expression for the rate $(T_{1Na}^{DDT})^{-1}$ of 23 Na spin-lattice relaxation caused by this mechanism is given by modifying the result of Abragam⁶¹ to take account of the different diffusion constants (D_{Na}^{-}) and D_{solv} and gyromagnetic ratios for the sodium anion and the 12C4 solvent. After further introduction of a factor of 2/3, which arises because the 23 Na relaxation is caused by coupling to an unlike rather than to a like spin, the rate is found to be

$$(T_{1\text{Na}}^{\text{DDT}})^{-1} = \frac{8\pi\gamma_{\text{Na}}^2\gamma_{\text{H}}^2\hbar^2N}{15d(D_{\text{Na}^{-1}} + D_{\text{soly}})},$$
 (12)

where N is the density of ¹H spins and d is the closest distance of approach between a ²³Na nucleus and a proton. A useful estimate of the ratio of the rates of relaxation predicted by the "weak" and "strong-complex solvation models" is derived by eliminating the diffusion constants from (12) by invoking the Stokes equation while eliminating τ_c (comp) from (8) by using the Debye equation. The result is

$$\frac{(T_{\text{INa}}^{\text{DDT}})^{-1}}{(T_{\text{INa}}^{\text{DDR}})^{-1}} = \frac{12\pi N r_{\text{NaH}}^{6}}{5dn_{\text{p}} a_{\text{comp}}^{3} (a_{\text{Na}}^{-1} + a_{\text{solv}}^{-1})},$$
(13)

where $a_{\rm Na^-}$ is the radius of the sodium anion. If the distance d is taken to be $r_{\rm NaH}$ and N is calculated from the density of 12C4, taking into account all 16 protons, then the ratio (13) is found to be $1.56n_{\rm p}^{-1}$. This yields a value of the relaxation rate $(T_{\rm 1Na}^{\rm DDT})^{-1}$ of $0.0125\,{\rm s}^{-1}$, which is over two orders of magnitude smaller than the observed relaxation rate in the metal solution ($\approx 3.3\,{\rm s}^{-1}$). In addition, the insensitivity of the Na⁻¹ linewidth, relaxation rate and signal intensity to proton decoupling rule out 23 Na⁻¹H dipoledipole interactions as being responsible for the observed relaxation rates of Na⁻¹ in these liquid solutions. We note in passing that, in contrast, in the solid state these dipolar interactions contribute significantly to the 23 Na spin-lattice relaxation. 62

Rates of ²³Na relaxation caused by dipolar interactions with the spins of the unpaired electrons, shown by ESR studies to be present in solution, would be proportional to the concentration of these unpaired spins. The concentration of the unpaired electrons would be expected to be closely related to that of the concentration of the Na⁻ in solution (which has been measured directly). It is unlikely that changing the Na⁻ ion concentration by a factor of 57 would only change the electron concentration by a factor of 3, the factor required if the nuclear relaxation originated solely from dipolar interaction with the unpaired electrons. It has been concluded from these results that the interaction with unpaired electron spins cannot be responsible for the observed relaxation data (Fig. 5).

Anisotropy of the nuclear shielding can only relax ²³Na nuclei in sodium anions if they are incorporated into a complex having a symmetry sufficiently low that the ²³Na shielding tensor is not isotropic. In any such low-symmetry complex there would be a significant electric field gradient at the ²³Na nucleus whose interaction with the nuclear electric quadrupole moment would relax this nucleus at a rate much greater than that observed. Furthermore, the rate of relaxation by chemical-shielding anisotropy varies as the square of the applied field, while the observed relaxation rates are field-independent.

The observed ²³Na relaxation cannot arise from the spin-rotation mechanism, because this relaxes nuclei more rapidly at higher temperatures, in contrast with the observed decrease in the spin-lattice relaxation rate as the temperature is increased (Table 4). These arguments provide further conclusive evidence that neither nuclear-shielding anisotropy nor spin-rotation interactions are responsible for the observed rates of ²³Na spin-lattice relaxation for the sodium anion in solution.

It can therefore be concluded that none of these magnetic-relaxation mechanisms can be responsible for the observed rates of Na spin-lattice relaxation in the sodium anion in 12C4 solutions.

C. Quadrupolar relaxation in Na-

1. Deduction of mechanism

The quadrupole moment of 23 Na ((0.14–0.15) × 10^{-28} e m²) and the temperature dependence of T_{1n} strongly suggest that the dominant relaxation process involves the fluctuating quadrupolar interactions caused by ionic and/or molecular motions in the liquid. The electric field gradient at the 23 Na nucleus in Na⁻ vanishes identically for both the isolated species and that symmetrically tetrahedrally, or octahedrally, coordinated by static ions or solvent molecules as in the strong-complex solvation model.

Not only has the latter possibility been dismissed for the reasons already discussed, but also this model is inappropriate for the quadrupolar relaxation of other anions in solution. ⁶⁰ Furthermore, it is shown in the next section that the observed linewidths are incompatible with ion-pair descriptions (Figs 4 (vi) and (vii)) for the Na⁻ ion in the 12C4 solutions. In the weak solvation model, applicable here, the quadrupole relaxation arises from the time-dependent fluctuations in the electric field gradient at the ²³Na nucleus caused by the independent translation or rotational motion of the other ions or polar solvent molecules. However, the remarkable insensitivity of the NMR chemical shift of the sodium anion to counterion, composition and temperature in 12C4 solutions suggests that the "fully random distribution" (FRD)⁵⁹ subdivision of the weak solvation model is appropriate for Na⁻ in these liquid crowns. In this model there is neither preferential orientation of solvent molecules nor a clearly identifiable first solvation shell.

The rate of quadrupolar spin-lattice relaxation is given exactly by 61

$$(T_{1n})_{\text{quad}}^{-1} = \frac{3}{40} \frac{2I+3}{I^2(2I-1)} \left(\frac{eQ}{\hbar}\right)^2 \Xi,$$
 (14)

with

$$\Xi = \int_0^\infty \overline{[F(t) F(t-\tau)]} \, d\tau, \qquad (15)$$

where I and eQ are respectively the nuclear spin and quadrupole moment and F(t) is the electric field gradient at the ²³Na nucleus at time t. The bar denotes an ensemble average. Since the parameter Ξ is a measure of the strength of the interaction of the relaxing nucleus with its environment, it is of interest^{26,63} to compare rates of nuclear relaxation that have been scaled for differences in the properties (I, eQ) of each nucleus. The required values

TABLE 5

Nuclear quadrupole moments and Sternheimer antishielding factors for cations and anions.

Ion	eQ	eta_2
²³ Na ⁺	0.14	-5.073
²³ Na ⁻	0.14	-15
35CI-	-0.079	-69.14
81Br-	0.28	-123
¹²⁷ I	-0.69	-138.4
¹³³ Cs ⁺	-0.003	-102.5

of eQ are assembled in Table 5. Thus one defines a property $(T_{1x})_{sn}^{-1}$ by

$$(T_{1x})_{\text{sn}}^{-1} = (T_{1x})_{\text{meas}} \left(\frac{eQ_{\text{Na}}}{eQ_{\text{x}}}\right)^2 \frac{I_x^2(2I_x - 1)}{2I_x + 3} \left(\frac{4}{3}\right).$$
 (16)

In order to compare the microstructure and dynamics of Na⁻ with that of other commonly occurring ions, one compares the values of Ξ for the sodium anion with those for the other ions shown in Table 6. The resulting values of $(T_{1x})_{sn}^{-1}$ reported in column 5 of Table 6 represent the nuclear-relaxation rates that would arise if all the ions all had the same quadrupole moment and nuclear spin as the ²³Na nucleus. This scaling, from columns 4 to 5, uses theory of such firmly established validity that the scaled numbers can be regarded as experimental results. It is of interest to note that the value of Ξ , which is directly proportional to $(T_{1x})^{-1}$, is very much smaller for Na⁻ than that for any other ion except Cs⁺ examined in this table. It should also be noted that the scaled Cs⁺ value of 817 is much greater than that for Na⁻, the smallness of the Cs⁺ rate of column 4 being caused by the small value of eO for ¹³³Cs.

The magnitude of the parameter Ξ in (15) depends both on the mean-square electric field gradient at the nucleus of interest and a characteristic timescale for the fluctuations in this field gradient. This timescale is most conveniently represented in terms of a single correlation time τ_c . In a simple model of quadrupolar relaxation, in the extreme-narrowing limit, this

 $TABLE \ \, 6$ Measured and scaled nuclear spin-lattice relaxation rates of ions in solution.

Ion	Solvent	τ _{solv} (ps)	$(T_{1x})_{\text{meas}}^{-1}$	$(T_{1x})_{sn}^{-1}$	$(T_{\rm lx})_{\rm sns}^{-1}$	$(T_{1x})_{snst}^{-1}$
Na ⁺	H_2O	3.5	16.2	16.2	191	7109
Na ⁺	12C4	3.5	3770	3770	44 450	44 450
Na-	12C4	130.0	3.33	3.33	3.33	3.33
Cl~	H ₂ O	3.5	25	39	1.66	61.71
Cl ⁻	MeOH	7.5	400	631	26.5	459
Cl-	EtOH	15.6	1300	2047	86	7177
Cl ⁻	12C4	130.0	14 100	22 260	935	935
Br ⁻	MeOH	7.5	11 800	2950	38.8	673
Br ⁻	EtOH	15.6	43000	10 750	142	1180
I-	H ₂ O	3.5	4600	346	3.58	133
I^-	MeOH	7.5	46 000	3460	35.8	620.5
I-	EtOH	15.6	100 000	7520	78	650
Cs ⁺	H ₂ O	3.5	0.075	817	15.5	577

integral (15) is proportional to the mean-square value of the electric field gradient eq multiplied by τ_c , so that ⁶¹

$$\Xi = (eq)^2 \tau_c. \tag{17}$$

The electric field gradient $(eq)_e$ at the nucleus generated by the environment external to the ion is magnified by a factor $1 + \beta_2$, the Sternheimer antishielding factor, to produce the total field gradient eq. Thus

$$eq = (eq)_{e}(1 + \beta_{2}).$$
 (18)

This antishielding originates from the additional electric field gradient generated by the electrons belonging to the ion. This in turn arises because the external environment distorts the electronic charge distribution of the ion away from spherical symmetry. ⁶⁴ Table 5 shows values of β_2 for the ions considered in Table 6. Since (17) and (18) show that the nuclear spin-lattice relaxation rate is proportional to $(1 + \beta_2)^2$, it is useful ^{26,63} to define the scaled relaxation rates

$$(T_{1x})_{\rm sns}^{-1} = (T_{1x})_{\rm sn}^{-1} \frac{(1 + \beta_2(Na^-))^2}{(1 + \beta_2(x))^2}.$$
 (19)

The resulting values reported in column 6 of Table 6 therefore represent the nuclear relaxation rates that would arise if all the ions both had the same nuclear properties as the 23 Na nucleus and had the same Sternheimer antishielding factor as Na⁻. The resulting data (column 6 of Table 6) are genuine reflections of the differences in strengths of the interactions of each nucleus with its environment external to the ion. Thus these numbers now reflect the differences in the microscopic structure and microdynamics of the various ions in solution. The rate of Na⁺ relaxation relative to that of Na⁻ is increased markedly by this scaling because the value of β_2 for Na⁺ is considerably less than that for Na⁻. Although the scaled relaxation rate (column 6) of Na⁻ is comparable to that of the halide ions in water, it is still nevertheless much less than that for Cl⁻ in the same solvent (12C4).

In any theory of nuclear relaxation in liquids the microdynamical behaviour can be characterized by a correlation time τ_c already introduced in (17). For all of the ions except Cl⁻ in 12C4 and Na⁺ in H₂O and 12C4, the molecules in the first solvation shell are known to reorientate independently both of the ion and of each other. Since the T_{1n}^{-1} data for Cl⁻ in 12C4 have only recently been reported, the details of the microdynamics responsible for this relaxation have not yet been elucidated. For all of the Na⁻ solutions, differing in concentration and countercation, the activation

energy $(22 \pm 1 \text{ kJ mol}^{-1})$, for the process responsible for the Na⁻ spin-lattice relaxation was found²⁶ (Table 4) to be essentially identical with that $(23 \pm 1 \text{ kJ mol}^{-1})$ for the process responsible for the ¹³C and ¹H relaxation in the pure solvent. As the latter relaxation arises from reorientation of individual 12C4 molecules, the activation energies show that such independent solvent reorientation is the source of the fluctuations in the electric field gradient responsible for the Na spin-lattice relaxation. Hence the correlation time governing the Na⁻ relaxation is the same as that, τ_{soly} , for the reorientation of individual uncomplexed solvent molecules in the neat liquid. The required value of τ_{solv} at 303 K was derived from the values of T_{in}^{-1} for ¹³C and ¹H as described above in Section III.B.2. As the correlation time for neat 12C4 thus derived, 130 ps, is much longer than either that (15.6 ps) of C₂H₅OH or that (3.5 ps) of H₂O, the scaled relaxation rates of column 7 in Table 6 for Na⁻ relaxation in 12C4 would be expected to be much greater than those for the ions in the other solvents if the strengths of the fluctuating electric field gradients were comparable. The much longer τ_{soly} of 12C4 is consistent with the much greater viscosity (10 cP) compared with that of H₂O (1 cP).

The argument presented in the last paragraph shows that it is interesting to scale the data of Column 6 by a factor $\tau(12C4)/\tau_x$, thereby generating the relaxation rates $(T_{1x})_{snsr}^{-1}$ that the ions would have if they all had the same quadrupole moments, nuclear spins and Sternheimer antishielding factors as Na⁻, and were all in solvents of the same viscosity as 12C4. Thus this scaled relaxation rate is given by

$$(T_{1x})_{\text{snsr}}^{-1} = (T_{1x})_{\text{sns}}^{-1} \frac{\tau(12\text{C4})}{\tau_x}.$$
 (20)

This scaling markedly increases the rates of column 3 in Table 6, except those for Na⁻ and Cl⁻ in 12C4, yielding scaled relaxation rates, which illustrate that the strength of the fluctuations of the environment experienced by the Na⁻ ion is at least an order of magnitude smaller than those for all of the other systems. Note that the "raw" experimental relaxation rates of colum 4 (which govern the NMR line width if $T_{1n} = T_{2n}$) might be incorrectly interpreted as suggesting that the interaction of Na⁺ with its environment in H₂O is only slightly greater than that of Na⁻ with its environment in 12C4. However, the present scaled relaxation rates show that this is not the case, and they (column 7) provide the conclusive evidence that the sodium anion in these systems is considerably more decoupled from its environment than any of the other common ions. In particular, the strength of the interaction of Na⁻ with its environment is about 280 times smaller than that of the Cl⁻ ion in the same solvent (12C4).

2. Modification of nuclear relaxation in Na by ion-ion interactions

The contribution to the rate of quadrupole relaxation arising either from ion pairing or from the transient passage of ions can be calculated from (14) if the parameter Ξ can be estimated. If the perturbing ion carrying charge e is located at a distance r from the quadrupolar nucleus then the fluctuations in the electric field gradient have a mean-square magnitude $4e^2r^{-6}$ if the Sternheimer antishielding factor of the ion being perturbed is neglected. If these fluctuations are characterized by a single correlation time τ_c then Ξ is given by

$$\Xi = 4e^{2}[(1 + \beta_{2})P]^{2}r^{-6}\tau_{c}, \qquad (21)$$

where P is the polarization factor, which takes account of the reduction of the electric field gradient caused by the polarization of the surrounding medium induced by the ion pair. This factor is given by 60

$$P = (2\varepsilon_{\infty} + 3)/5\varepsilon_{\infty},\tag{22}$$

where ε_{∞} is the high-frequency dielectric constant, which is equal to the square of the refractive index extrapolated to infinite wavelength (n_{∞}) . The fluctuations in the electric field gradient responsible for the relaxation arise from reorientation of the ion pair over timescales during which this reorientates appreciably. Since the ion pair reorientates independently of the surrounding molecules, any electric field gradient arising from any preferential orientation of these surrounding molecules does not fluctuate over this timescale and therefore does not contribute to the relaxation. This shows that the electric field gradient is not reduced by any factor involving the static dielectric constant because this constant arises from orientation of the surrounding molecules by the ion pair. However, the charge distributions of the electrons on surrounding molecules can readjust much more rapidly than the ion pair reorients. Therefore the electric field gradients at the nuclei in the ion pair will contain a contribution from the electronic polarization of the surrounding medium caused by the electric field gradient originating from the ion pair. This shows²⁶ that the polarization factor P should be calculated from the high-frequency rather than the static dielectric constant. The same considerations show that the electric field gradient arising from the passage of one ion past another ion containing a quadrupolar nucleus is also modified by the polarization factor in (22).

For the ion pairs in water or MeNH₂ the rotational correlation time τ_c has been calculated from Debye equation⁵⁴

$$\tau_{\rm c} = 4\pi (a_{\rm ip})^3 \eta / 3kT,$$
 (23)

where $a_{\rm ip}$ is the radius of the reorienting ion pair. However, for the ion pairs in 12C4, $\tau_{\rm c}$ can be calculated²⁶ using (9) from the correlation time of 0.704×10^{-10} s (deduced from measurements of the ¹H relaxation in pure 12C4 at 303 K).

The correlation time τ_c appropriate to the quadrupolar relaxation of a nucleus in species 1 of radius a_1 caused by the electric field gradient originating from the independent passage of species 2 of radius a_2 is given by

$$\tau_1 = \frac{(a_1 + a_2)^2}{6(D_1 + D_2)} \,, \tag{24}$$

where D_1 is a diffusion constant of species 1. This result is derived²⁶ from the formula $\tau_1 = r^2/12D$ by taking the closest distance of approach r to be $a_1 + a_2$ and replacing the diffusion constant D for like molecules by $\frac{1}{2}(D_1 + D_2)$, as discussed by Abragam. After introducing the Stokes equation for the diffusion constants, τ_1 can be expressed as

$$\tau_1 = \frac{\pi \eta a_1^3 (1+R)^2}{kT(1+R^{-1})},\tag{25}$$

with $R = a_2/a_1$. This can be expressed in terms of the correlation time $\tau_{c,1}$ for the reorientation of the isolated system 1 by invoking the Debye equation to yield

$$\tau_1 = \frac{3}{4} \tau_{c,1} \frac{(1+R)^2}{1+R^{-1}}.$$
 (26)

The expression (23) with τ_c now replaced by τ_1 , (25), predicts the correct linewidths only if every ion in the solution experiences the transient passage of another ion. In dilute solutions these linewidth predictions should be reduced²⁶ by a factor equal to the fraction of the time during which an ion is perturbed by the passage of another ion. Linewidth predictions thus derived for a variety of systems are presented in Table 7.

The reliability of calculations using (21)–(23) has been tested²⁶ by predicting the width of the Cl⁻ resonance in the contact ion pair with Et₄N⁺ in water. The N⁺–Cl⁻ distance $r_{N,Cl}$ was taken to be equal to that (4.844 Å) measured for solid Et₄NCl·H₂O by X-ray crystallography.⁶⁵ Measurement of a space-filling Corey–Pauling model of the ion pair Et₄N⁺Cl⁻ yielded $r_{N,Cl} = 4.8$ Å, in agreement with experiment, from which a = 4.25 Å. Extrapolation to infinite wavelength of the water refractive indices of 1.329 at 7065 Å and 1.399 at 4358 Å through $n_{\lambda} = n + B\lambda^{-2}$ yields n = 1.322. The halfwidth of the Cl⁻ resonance in a contact ion pair with Et₄N⁺ is predicted using β_2 [Cl⁻] = -69.1 to be 579 Hz. This agrees well with the experimental value of 598 ± 195 Hz deduced⁶⁶ from measurement of the

TABLE 7								
Predicted NMR	linewidths	for	Na+	and	Na ⁻	in	various	anion-cation
		a	ggreg	ates.				

Ion	System ^a	Solvent	Δν _{1/2} /Hz
Cl ⁻	cip Et₄N ⁺	H ₂ O	579
Na ⁺	cip Br	MeNH ₂	11
Na ⁺	ssip Br	MeNH ₂	1
Na ⁺	passed by Br	MeNH ₂	1.8
Na ⁺ (MeNH ₂)	passed by Br	MeNH ₂	0.1
Na ⁺	cip Na	MeNH ₂	9
Na ⁺	ssip Na	MeNH ₂	0.8
Na ⁺	passed by Na	MeNH ₂	1.4
Na ⁻	cip Na ⁺	MeNH ₂	106
Na ⁻	ssip Na ⁺	MeNH ₂	10
Na ⁻	cip Na ⁺ (18C6)	MeNH ₂	10
Na ⁻	ssip Na ⁺ (18C6)	MeNH ₂	3
Na ⁻	passed by Na ⁺	MeNH ₂	17
Na ⁻	passed by Na ⁺ (18C6)	MeNH ₂	1.6
Na ⁻	cip Na ⁺	12C4	2951
Na ⁻	cip Na ⁺ (12C4) ₂	12C4	237
Na ⁻	$ssip Na^{+}(12C4)_{2}$	12C4	51
Na ⁻	passed by $Na^+(12C4)_2$	12C4	38

^a cip = contact ion pair; ssip = solvent-separated ion pair.

concentration dependence of the halfwidth of the Cl⁻ ion solvated solely by water molecules.

It has been suggested⁶⁷ that there is significant pairing of Na⁺ and Br⁻ ions in solutions of NaBr in MeNH₂, even though the halfwidth of the Na⁺ resonance is as small as 4.5 Hz. After introducing $\beta_2[Na^+] = -5.073$, Na^+ and Br ionic radii of 1.0 and 1.98 Å and the MeNH₂ refractive index of 1.3491, 68 the linewidth of the Na⁺ resonance in the contact-ion pair is predicted²⁶ to be 11 Hz. This is reduced to 1 Hz in a solvent-separated ion pair, taking the radius of the MeNH₂ molecule to be the 1.3 Å estimated from a Corey-Pauling model. These results suggest that, although the observed linewidth precludes the existence of contact ion pairs, they are consistent with the existence of solvent-separated ion pairs, which was indeed the hypothesis favoured by Phillips et al. 67 A prediction of a width of 1 Hz from ion-pairing is not inconsistent with experiment, because the Na⁺ resonance in water has a width of 5Hz originating entirely from reorientation of the solvent. In this calculation²⁶ the entire ion pair consisting of the three species was taken to reorient as a single rigid body. It is debatable whether the concept of ion pair would be appropriate if either ion moved independently, this essentially being similar to the independent motion of the counterion past the ion containing the quadrupolar nucleus.

The NMR signal of Na⁻ in solutions in MeNH₂ containing 18-crown-6 (18C6) is also observed to be narrow, ⁶⁹ having a width of 1–3 Hz despite the postulation of substantial ion-pairing in these solutions. The radius of an 18C6 molecule and hence of the Na18C6⁺ complex was estimated²⁶ to be 4.9 Å if all the C–O–C angles of the crown ring are taken to be 110°. The Na⁻ linewidths predicted for a contact ion pair with Na18C6⁺ and for independent translation of the complex cation are presented in Table 7. The observed Na⁻ linewidths suggested²⁶ that contact ion pairs are not formed, but are consistent with an ion pair between Na⁻ and Na18C6⁺ separated by a MeNH₂ molecule. The calculations invoking free Na⁺, although unrealistic for solutions containing 18C6, do show the marked reduction of the Na⁻ linewidths predicted to occur when the Na⁺ becomes complexed to 18C6.

In the 12C4 solutions studied previously both the high molar ratio of 12C4 to Na and the X-ray crystal structure of Na(12C4)⁺₂Cl⁻·5H₂O allowed rejection²⁶ of the hypothesis that 1:1 Na 12C4⁺ complexes are formed. The radius of the Na(12C4)⁺ complexes present in solution is estimated to be 4.86 Å by assuming normal values for bond lengths and bond angles. This is consistent with the maximum radius of 5.45 Å predicted by adding one C-H bond length plus the van der Waals radius of a hydrogen atom to the Na⁺-C distance measured by X-ray crystallography of solid Na(12C4) [†]Cl⁻·5H₂O. ⁷⁰ It is also consistent with the minimum radius of 4.0 Å predicted by adding the van der Waals radius of oxygen (1.4 Å) to the Na⁺-ring-C distance of 2.5 Å measured from the solid chloride hydrate. The Na resonance linewidths predicted from these data, with the value of 1.462⁷¹ for the refractive index of 12C4, are presented in Table 7. The linewidths predicted either for contact or solvent-separated ion pairs are so much greater than the observed widths that it was concluded that the Naions do not exist as part of any ion pairs in these solutions. Similarly, the Na ions are not subject to the continual passage of diffusing Na(12C4)⁺₂ complexes. Since the observed line width of 3 Hz is approximately one tenth of the 38 Hz calculated for the continual passage of Na⁺(12C4)₂ complexes, only a maximum of one tenth of the ions can be subjected to such a perturbation at any one instant.

D. Summary

The nuclear spin-lattice relaxation of Na⁻ in 12-crown-4 solutions has been found²⁶ to be essentially independent of the countercation and to depend only weakly on the concentration of the Na⁻ ions in solution. Furthermore,

the activation energies for the processes responsible for the Na nuclear spin-lattice relaxation are not only independent of metal concentration, and countercation, but are the same as those observed for the processes governing the ¹H and ¹³C relaxation in the pure 12-crown-4 solvent. It has been concluded²⁶ from these observations that the Na⁻ ion in solution is relaxed solely through a very inefficient quadrupole mechanism in which the electric field gradient responsible for the relaxation originates from the independent translation and/or rotational motion of surrounding 12-crown-4 molecules. Calculations of the NMR linewidth have shown²⁶ that the Na ion does not exist as a contact or solvent-separated ion pair with the sodium cation, and that, if the Na is past by a Na (12C4) complex, then, at most, 10% of the Na ions at any one time will be participating in such an encounter. The Na⁻ ion in solution is therefore envisaged as having the structure shown in Fig. 6. This illustrates the Na ion surrounded by weakly interacting solvent molecules that, moreover, reorientate and translate independent of the Na ion, which itself retains the gas-phase 3s² electronic structure.

After scaling the rates of nuclear spin-lattice relaxation of commonly occurring cations and anions to take account of differences in nuclear spins,

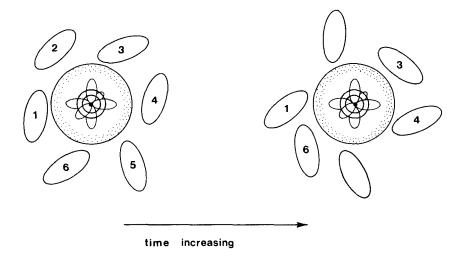


FIG. 6. A representation of the structure of the sodium anion in solution, based on information from chemical-shift and nuclear-relaxation measurements. Solvent molecules labelled 1-6; the drawings depict the situation around the Na ion as a function of time. The 12C4 molecules rotate and reorientate independently of the centrosymmetric Na ion. 12C4 solvent molecules that are not numbered represent those that have exchanged with the bulk solvent.

quadrupole moments, Sternheimer antishielding factors and solvent viscosities, the ²³Na nuclear spin in Na⁻ is seen to be considerably more decoupled from its environment than any of the other centrosymmetric ions in solution.⁶³

IV. CHEMICAL DYNAMICS IN ALKALI-METAL SOLUTIONS^{25,28}

A. The sodium anion²⁸

As we have seen (Section III), the Debye equation can be invoked to show that the extreme-narrowing condition is appropriate in the liquid crown systems: $viz \omega_0 \tau_c \le 1$. If this is the case then one expects an equality between

TABLE 8

Sodium-anion spin-lattice and spin-spin relaxation times for various sample compounds, temperatures and countercations.*

NaK	[Na ⁻] =	0.11 mo	l dm ⁻³	NaK	[Na ⁻] =	0.17 mo	1
T	T_{1n}	T_{2n}	$\Delta \nu_{1/2}$	T	T_{1n}	T_{2n}	
290	164	147	3.9	280	99	88	
293	181	160	3.2	290	141	110	
295	188	154	3.7	300	187	136	
300	215	157	3.7				
305	250	181	3.4				
310	288	205	3.1				
NaRb	[Na ⁻] =	0.165 m	ol dm ⁻³				
T	T_{1n}	T_{2n}	$\Delta \nu_{1/2}$				
285	119	74	6.6				
290	129	72	6.3				
295	155	70	6.3				
300	177	65	6.2				
NaCs	[Na] =	0.02 mo	l dm ⁻³	NaCs	[Na ⁻] =	0.14 mc	ol (
T	T_{1n}	T_{2n}	$\Delta \nu_{1/2}$	T	T_{1n}	T_{2n}	
270	89	79	6	285	112	69	
280	121	109	4	290	136	75	
290	191	130	3.4	295	167	86	
300	228	167	1.9	300	210	94	

^a All T_{1n} and T_{2n} values in ms and all linewidths in Hz. All data from Ref. 28.

the spin-spin and spin-lattice relaxation rates, provided that these arise via the quadrupole mechanism that was shown in the last section to govern the spin-lattice relaxation. In the solutions prepared by dissolving NaK, NaRb and NaCs alloys in 12C4, the spin-spin and spin-lattice relaxation times of the Na⁻ ion have been measured²⁸ as functions of both temperature and composition (deduced from the integrated intensity of the Na⁻ signal). However, the observed ²³Na spin-spin relaxation times are always shorter than the corresponding spin-lattice relaxation times, and this difference appears to be more pronounced at higher temperatures (Table 8 and Fig. 7). Therefore another nuclear spin-spin relaxation process must be augmenting the quadrupole relaxation contribution $(T_{2n})_{\text{quad}}^{-1}$. One can attribute this additional relaxation to chemical exchange processes that limit the lifetime of M⁻ in solution. Writing

$$(T_{2n})_{\text{total}}^{-1} = (T_{2n})_{\text{quad}}^{-1} + (T_{2n})_{\text{exch}}^{-1}.$$
 (27)

Equation (27) yields, via substitution, the exchange contribution $(T_{2n})_{\text{exch}}^{-1}$ to the total relaxation rate. In Fig. 8 we present, for a range of solutions, the temperature variation of $(T_{2n})_{\text{exch}}^{-1}$ in terms of Arrhenius-type plots, from which one can derive some activation energies for the processes responsible for the addition spin-spin relaxation.

In the case of mixed Cs⁺Na⁻ samples the exchange rate was temperature-independent over the entire temperature range examined.

For the Rb⁺Na⁻ and K⁺Na⁻ systems the observed data suggest two processes; the first, occurring in the low-temperature regime, is markedly temperature-dependent, whereas in the high-temperature limit the K⁺Na⁻ exchange rates become insensitive to temperature.

Since the signal for which the T_{1n} and T_{2n} values have been measured (Fig. 7) arises from just the Na⁻ ion, the signal from this species is in the slow-exchange limit. Hence the lifetime of the Na⁻ ion is equal to the value of $(T_{2n})_{\rm ex}$ deduced from (27). A typical value for this lifetime is that of $1.1 \, \rm s$ for a $0.02 \, \rm M$ Na⁻Cs⁺ solution at $280 \, \rm K$.

At the highest temperatures the lifetime of Na^- in NaK solutions is temperature-independent and the process has no activation energy. In the case of the Rb^+Na^- solution the lifetime is very slightly more sensitive to temperature at low temperatures than at high temperatures; here it is not unreasonable to anticipate that the lifetime of Na^- would become temperature-independent if experiments could be performed at sufficiently higher temperatures. Thus the countercation very significantly influences both the high- and low-temperature exchange processes; that is, the mechanism limiting the lifetime of Na^- must therefore involve the countercations K^+ , Rb^+ and Cs^+ . The observation of temperature-independent lifetimes for Na^- suggested that the chemical-exchange process

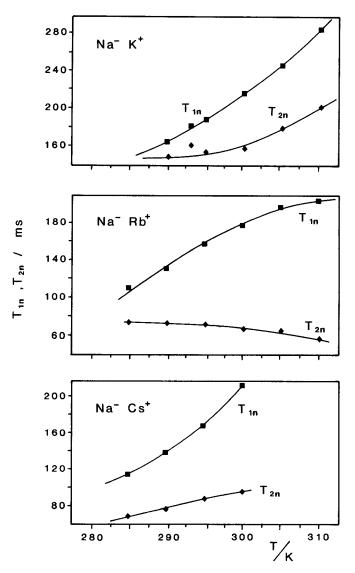


FIG. 7. ²³Na nuclear spin–spin (T_{2n}) and spin–lattice (T_{1n}) relaxation times for solutions of mixed alkali-metal alloys in 12C4.

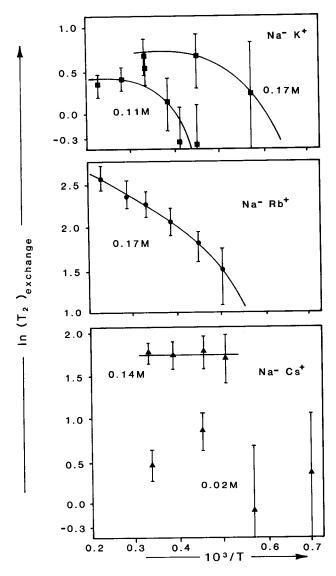


FIG. 8. ²³Na spin-spin exchange rates $(T_{2n})_{\rm exch}^{-1}$ as functions of temperature for solutions of mixed alkali-metal alloys in 12C4.

dominating under these conditions has zero activation energy. Furthermore, the derived lifetimes for Na⁻ in solution are ramarkably long compared with typical timescales (10⁻¹⁰ s) for processes occurring at a molecular level.

Since the observed rates are countercation-dependent, the exchange processes cannot be unimolecular. In addition, most bimolecular processes have a rate depending upon temperature as $A \exp(-E_a/kT)$, and this can only yield a rate independent of temperature if $E_a = 0$. If the preexponential factor A were an expression of the rates of molecular collision then this would give a rate very much greater than the observed lifetime of Na. It has therefore been suggested²⁸ that the temperature-independent exchange process is due to quantum-mechanical tunnelling of electrons from Na. The rate of tunnelling would involve the amplitude of the tail of the Na wavefunction at some other site. Since this wavefunction decreases exponentially with increasing distance, then clearly for tunnelling onto sites at large distances, slow rates are possible. As the limiting (high-termperature) rates are also strongly metal-dependent (i.e. dependent upon the alkali countercation M⁺), any tunnelling of an ns valence electron of Na⁻ must be onto a species containing a countercation, as opposed to tunnelling onto a solvent molecule. Electron tunnelling from Na must therefore proceed to some vacant (accessible) orbital on the alkali cation. Clearly, a heavily complexed cation will have these s orbitals occupied via strong directional bonding of the lone pair of electrons from the crown solvent; see Section I. It has been proposed²⁸ that electron tunnelling from Na is only possible onto an "uncomplexed" cation. This uncomplexed cation is viewed as one that is partially solvated by the crown, but not one that forms a strong inclusive complex in which the cation is partly (or completely) enclosed either in the

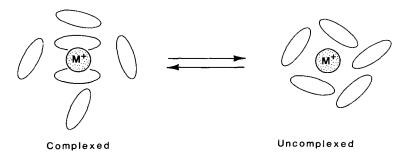


FIG. 9. A schematic representation of the difference between complexed and solvated alkali cations in 12C4; the former is representative of the situation at low temperatures in Na⁺, K⁺ and Rb⁺ samples; the solvated species are postulated for the high-temperature regime (see text).

cavity of the crown or as a sandwich complex, i.e. M⁺C₂ (Fig. 9). The latter possibilities arise in the crown solutions because the essentially 2D nature of the crown-ether molecule allows for stong interaction between the cations and the crown. Obviously, in the case of 12C4 and 15C5, liquids under ambient conditions, the crown is both the complexant and the solvent. This two-site equilibrium, (29) below, has been invoked²⁸ as the process responsible for the lifetime limitation of Na⁻ for those cases where this lifetime is strongly temperature-dependent. A representation of both complexed and uncomplexed cationic species is shown in Fig. 9. This equilibrium (29) can be expected to be temperature-dependent and to shift to the right with increasing temperature. In many ways, this model is similar to that recently advanced by Phillips et al.⁶⁷ for solutions of NaBr in ethylamine in the presence of a complexing agent, where the equilibrium is

$$Na^{+}Br^{-} + C \rightleftharpoons Na^{+}C, Br^{-} : C = 18C6/15C5$$
 (28)

and where the solvent (EtNH₂) is known also to solvate sodium cations. However, the equilibrium in the crowns does not involve a significant degree of ion-pairing, unlike the case of NaBr in ethylamine. The low-temperature exchange data (Fig. 8) strongly suggest that it is most difficult to form the uncomplexed potassium cation in these systems, followed by Rb⁺ and Cs⁺.

A tunnelling process of the sort invoked here would be expected to be sensitive to the nature of the countercation over the entire range of temperature, and also to depend upon the countercation concentration at the lower temperature. The data plotted in Fig. 8 also show the concentration dependence of the Na⁻ $(T_{2n}^{-1})_{\text{exch}}$ rate.

In the case of NaK solutions it has been proposed²⁸ that the transition to the (high-temperature) exchange process occurs when the equilibrium (29) is far enough to the right to yield the maximum number of uncomplexed K⁺ ions within some characteristic (diffusion or encounter) distance of the Naion. Thus one predicts that on increasing the concentration of K⁺ one will go over to the quantum-mechanical tunnelling regime at a lower temperature. This is in qualitative accord with the concentration dependence of the exchange terms. Similarly, the exchange rate would be expected to be dependent on the concentration of Na, again as observed experimentally. In this view, the lifetime of Na will be determined by the number of uncomplexed alkali cations within the tunnelling distance. Thus, at low concentrations, at all temperatures there is an insufficient number of uncomplexed cations. Hence an increase in temperature leads to the formation of more uncomplexed cations and the exchange rate will increase accordingly. However, for the most concentrated solutions at the highest temperatures the concentration of K⁺ is sufficiently high that the lifetimelimiting step then becomes the tunnelling rate.

For NaCs solutions, increasing the concentration of Cs⁺ from 0.02 to 0.14 M increases the exchange rate by a factor of 3.6. It should be noted that these are relatively dilute solutions and that the rate does not increase by the factor of 7 increase of the concentration. Under these circumstances, once one has a number of uncomplexed cations sufficient to yield a significant tunnelling rate, increasing the concentration of metal in solution will only marginally affect the overall rate. The data suggest that the activation energy of the process (29) is zero for NaCs, so that increasing the temperature does not lead to changes in the total exchange rate $(T_{2n}^{-1})_{\text{exch}}$.

In summary, then, two processes for limiting the lifetime of Na in these solution have been proposed; for the case of 12C4

$$M^+(12C4)_2 \rightleftharpoons M^+ + (12C4)$$
 (see Fig. 9) (29)

$$Na^- + M^+ \rightarrow [Na^+e^-] + M^+e^-$$
 (30)

The species M⁺e⁻ is a weak complex between a cation and an unpaired electron, and was envisaged to possess a small (<10%) atomic character, with both M⁺ and e⁻ being quite highly solvated.³ Although the processes, as written, indicate that the paramagnetic "remnant" [Na⁺e⁻] of Na⁻ is also a weak complex, it was suggested that this species is instantaneously left in an electronic state approximating closely to that of a gas-phase sodium atom.

The above two processes cannot be the only ones occurring in these metal solutions, since in the absence of other processes, reactions (29) and (30) will lead, in time, to the depletion of Na⁻ while increasing both the Na⁺e⁻ and M⁺e⁻ concentrations. It has therefore been suggested that Na⁻ is regenerated through the process

$$Na^+e^- + e^- \rightarrow Na^- \tag{31}$$

The other possibility that Na⁻ is regenerated by a reaction of Na⁺e⁻ with M⁺e⁻ to yield Na⁻ and M⁺ has been rejected²⁸ because this process not only necessitates the ejection of an electron from M⁺e⁻, which requires work against the Coulombic interaction of e⁻ and M⁺, but also M⁺e⁻ is only present in concentrations much smaller than that of the free or solvated electron required in process (31). Further evidence in favour of the regeneration of Na⁻ via the process (31) comes from pulse-radiolysis studies⁷² of metal solutions. These studies show that Na⁻ is formed from Na⁺ via a two-step process in which Na⁺ is first converted to Na⁺e⁻, which is then converted to Na⁻ in accordance with process (31). Clearly, the process (31) can only been held responsible for the regeneration of Na⁻ if there is a significant concentration of solvated electrons e⁻. The major ESR signal observed^{11,73} in the metal-liquid-crown solutions is an intense signal close to free spin, which is consistent with the idea of a high concentration of

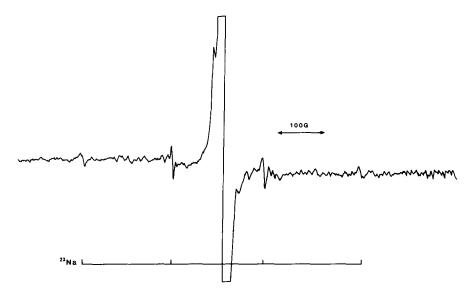


FIG. 10. ESR spectrum of a quenched solution of sodium-rubidium alloy in 12C4.

solvated electrons. Furthermore, ESR studies of the frozen solutions show a very strong absorption at free spin, as illustrated, for example, by the NaRb spectra shown in Fig. 10.

The fact that pure sodium metal dissolves in the pure crown solvents shows that the atom-like Na⁺e⁻ species must be capable of undergoing further reaction with the crown solvent to yield some cation-based species. If this were not the case and the only reaction of Na⁺e⁻ with e⁻ was to yield Na⁻ (as in (31)) then Na metal would not dissolve in a pure crown. Experimental evidence has been advanced⁷⁴ to show that the alkali anions are not formed in just one single step in the dissolution of alkali metals in solutions containing crown ethers. One can reject the possibility that Na⁺e⁻ could lose an electron to form Na⁺ and a solvated electron because the experimental data have already shown that Na⁻ will not lose an electron onto the solvent, but requires the presence of an uncomplexed M⁺ ion. This process is expected, a priori, to be more facile in the anion than the corresponding loss of an electron from an atomic species M⁺e⁻. These considerations have led to the suggestion²⁸ that the Na⁺e⁻ species undergoes the following process with the solvent:

$$Na^+e^- + 2(12C4) \rightleftharpoons (Na^+e^-)(12C4)_2$$
 (32)

to yield a solvated sodium atom still having a high percentage atomic character. Since the crown ether is known to be a strong solvator of cations,

it has also been suggested that the solvated alkali atom can undergo the further reaction

$$(Na^+e^-)(12C4)_2 \rightleftharpoons Na^+(12C4)_2 + e^-$$
 (33)

to produce solvated electrons. This reaction can provide the source of the unpaired electrons that are required in process (31), which must occur when pure sodium metal is dissolved in a crown solvent to produce Na⁻ ions. Clearly, the Na⁺ complex has the possibility of forming a weak ion pair with a solvated electron:

$$Na^{+}(12C4)_{2} + e^{-} \rightleftharpoons Na^{+}(12C4)_{2}e^{-}$$
 (34)

Evidence for the occurrence of these species comes from both ESR studies of quenched metal-12-crown-4 solutions 11,28,73 and similar studies of vitreous solids formed by rapid quenching of alkali hexamethylphosphoramide (HMPA) solutions.⁷⁵ A typical spectrum from a quenched NaRb solution in 12-crown-4 is shown in Fig. 10. Here the large hyperfine splitting due to ²³Na is clearly observed, and this has been assigned to the solvated atomic species (Na⁺e⁻) (12C4)₂ rather than to the Na⁺e⁻ species because the former can be expected to occur in much higher concentration.²⁸ The isotropic hyperfine splitting A_{iso} corresponds to 65% occupancy of the Na 3s orbital. The same sodium-based signal has also been observed from a frozen NaK-12-crown-4 solution, the isotropic hyperfine splitting being the same as the NaRb case. Evidence for the existence of more than one species Na⁺e⁻ of high percentage atomic character as postulated in the above schemes comes from ESR studies⁷⁵ of quenched solutions of sodium metal in HMPA. These studies showed the largest such signal to have approximately 64% atomic character, but with a number of other high-atomic-character species.

The species $Na^+(12C4)_2e^-$ has also been identified from solid-state NMR studies, which showed the species to have less than $10^{-3}\%$ atomic character. The ESR signal given by such a species would be indistinguishable from that of a trapped electron not associated with a cation. Returning to the process (30), ESR studies 11,73 of the quenched metal-12-crown-4 solution also provide evidence for the existence of the M^+e^- species having a small (<10%) atomic character. The absorption in the $g \approx 2$ region in Fig. 10 is a superposition of a strong signal at free spin and another signal whose width, moreover, in NaK and NaCs samples differs from that in the NaRb case. From an analysis 11,73 of the linewidths of this metal-dependant signal, it has been shown that this resonance can be assigned to the species M^+e^- , having approximately 1% atomic character. Since this species has a low percentage atomic character, it has been suggested 28 that it can also dissociate to produce free (or solvated) electrons,

according to the equilibrium

$$M^+e^- \rightleftharpoons M^+ + e^- \tag{35}$$

This reaction of M^+ with the solvent to form the $M^+(12C4)_2$ complex is simply the inverse of the reaction (29), postulated as the first step in the process limiting the lifetime of Na^- in solution. Clearly, the possibility exists that the $M^+(12C4)_2$ complex will form a weak ion pair with the electron

$$M^{+}(12C4)_{2} + e^{-} \rightleftharpoons M^{+}(12C4)_{2}e^{-}$$
 (36)

For the solutions prepared by dissolving pure Cs metal in mixtures of 12-crown-4/15-crown-5 and THF there is NMR evidence²⁵ that both the species Cs^+L_2 and $Cs^+L_2e^-$ (L = 12C4, 15C5) postulated in (36) are indeed present. This is discussed in the next section, in which the failure to detect any cation-based signals at ambient temperature from solutions prepared using only pure crown solvents is commented on.

It is important to note that equilibria involving electrons are envisaged as occurring within the Boron-Oppenheimer appromimation, i.e. that the electron hops are much more rapid than any timescales for molecular motion. Thus the molecules are essentially stationary during the time when the electron moves from one site to another; processes in which both the electron and the arrangements of the molecules in space change simultaneously are not regarded as occurring with any significant degree of probability. This means that processes such as $M^+e^- + L_2 \rightarrow M^+L_2e^-$ have not been invoked in the scheme of equilibria presented above.

B. Caesium-based species²⁵

In the last section the temperature, concentration and counterion dependence of the nuclear spin-lattice and spin-spin relaxation times of the alkali anion signals were described. In conjunction with ESR studies of quenched solutions, it was shown how these results could be used to deduce both the nature of the chemical species present and some of the equilibria they undergo. In particular, the species Na⁺(12C4)₂ and Na⁺(12C4)₂e⁻ were postulated to play an important role in the scheme of equilibria limiting the lifetime of Na⁻, even though no NMR signals based on any cation-based species were observed for systems prepared using either pure 12C4 or pure 15C5 as solvent. Similarly, no ¹³³Cs NMR signals could be detected from solutions of caesium metal in the pure crown-ether solvents, 12C4 and 15C5, even though the optical spectra ^{11,27,73} of these blue solutions reveal the presence of the Cs⁻ ion. The failure to observe such signals suggests that they are broadened beyond detection either by chemical exchange processes or by a highly efficient relaxation mechanism.

It is the object of this section to describe further ¹³³Cs NMR experiments that have recently been carried out²⁵ using mixed solvent systems. The results provide further evidence for the scheme of reactions presented in the last section. The failure to observe cation-based signals in metal solutions prepared using pure crown solvents could be caused by rapid rates of relaxation occurring at the relatively high temperatures at which the measurements necessarily had to be made. Unfortunately, these two liquid crown ethers have only a very narrow temperature range because of their relatively high freezing points (>260 K). However, as illustrated by Dye and coworkers, ^{2,15,18} the accessible liquid temperature range can be increased by the addition of a cosolvent such as tetrahydrofuran (THF).

Figure 11 shows ¹³³Cs NMR spectra at 198 K for three saturated caesiummetal solutions containing different proportions of the liquid crown ethers

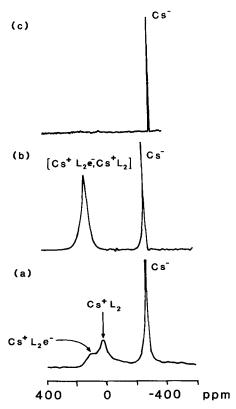


FIG. 11. 133 Cs NMR spectra (52.485 MHz) of solutions of caesium metal in 12C4, 15C5/ tetrahydrofuran mixtures (taken from Ref. 25 and used with permission). (a) 5% v/v 12C4/THF; (b) 5% v/v 15C5/THF; and (c) 20% v/v 12C4/THF mixtures. Chemical shifts measured relative to an infinitely dilute solution of CsCl in D_2O .

12C4 and 15C5 in THF. Solutions that contain low crown-ether content (<5% v/v) (Fig. 11) yield spectra that consist of either two or three signals. The chemical-shift data presented in Table 1 show that the signals at chemical-shifts of -278, -280 and -300 ppm for the 12C4 and 15C5 solutions, (a), (b) and (c) respectively, can be assigned to the caesium anion Cs⁻. For the caesium-THF solution containing 5% 12C4 (Fig. 11(a)) there are two signals, having chemical shifts of +1.9 ppm and +65.9 ppm, which have been assigned to cation-based species. The signal at +1.9 ppm was assigned to the species Cs⁺(12C4)₂ consisting of a Cs⁺ ion complexed by two 12C4 molecules. The assignment was unambiguous because signals having very similar chemical shifts ($\delta = -4$ ppm) and linewidths of approximately 50 Hz are observed (Table 1) from solutions of caesium halides (CsX; X = Cl, Br, I) in neat liquid 12C4. There are two compelling reasons for assigning the broader signal located at +65.9 ppm to the paramagnetic complex Cs⁺(12C4)₂e⁻. First, the NMR signal from the solid electride Cs⁺(12C4)₂e⁻, whose crystal structure has been characterized, occurs at almost the identical chemical shift. 76 Secondly, the shift difference between the Cs⁺(12C4)₂ and Cs⁺(12C4)₂e⁻ signals is a Knight shift \mathcal{K} , which originates from the Fermi contact interaction with the unpaired electron. The shift difference is given by⁵⁷

$$\mathcal{K} = -\frac{g_{\rm e}}{g_{\rm n}} \frac{\beta_{\rm e}}{\beta_{\rm n}} \frac{A}{4kT},\tag{37}$$

where A is the metal hyperfine coupling constant, g_e and g_n are the electronic and nuclear g factors while β_e and β_n are the Bohr and nuclear magnetons. Using this equation, it has been predicted from the observed Knight shift of 64 ppm that $A = 20\,000\,\mathrm{Hz}$. In the liquid state one expects to observe a single NMR signal from the species $\mathrm{Cs^+}(12\mathrm{C4})_2\mathrm{e^-}$ if T_{1e}^{-1} , the inverse of the electron spin–lattice relaxation time, is much greater than A. If the nuclear relaxation of $^{133}\mathrm{Cs}$ in $\mathrm{Cs^+}(12\mathrm{C4})_2\mathrm{e^-}$ is dominated by the modulation of the hyperfine coupling by the electron spin–lattice relaxation then the width of the NMR signal is given by 61

$$\Delta \nu_{1/2} = \pi A^2 T_{1e}. {(38)}$$

An experimentally derived value for T_{1e} of 3×10^{-8} s at 190 K for this solution, when combined with the above A value of 20000 Hz, has been used²⁵ to predict from (38) that the width of the NMR signal from Cs⁺(12C4)₂e⁻ is 38 Hz. The contribution to the observed linewidth arising from other processes, such as quadrupole relaxation, can be expected to be similar to these occurring for the diamagnetic species Cs⁺(12C4)₂. It has been found experimentally²⁵ that the NMR linewidth of Cs⁺(12C4)₂e⁻ is some 30 Hz greater than that of the Cs⁺(12C4)₂ signal. The close similarity

between the experimental result and the calculated width has been taken to provide compelling evidence for the assignment.

On raising the temperature, the signals from $Cs^+(12C4)_2e^-$ and $Cs^+(12C4)_2$ broaden rapidly and finally coalesce to form a single broad line at 200 K. The averaging of these two NMR signals has been ascribed to the equilibrium.

$$Cs^{+}(12C4)_{2} + e^{-} \rightleftharpoons Cs^{+}(12C4)_{2}e^{-}$$
 (39)

This is just the process (36). At higher temperatures the signal broadens very rapidly to become unobservable. The failure of the averaged signal to sharpen with increase in temperature has been ascribed to an extremely efficient nuclear spin-relaxation mechanism, whose rate increases very rapidly with temperature.

The dynamical processes responsible for broadening the Cs⁺ based signals can also be enhanced by the addition of further 12C4. Thus the nuclear relaxation processes responsible for the failure to observe cation-based signals in the 5% v/v 12C4 solution at high temperatures are also the cause of the absence of similar signals in the system containing 20% v/v 12C4 (Fig. 11c), even at the lowest temperatures.

The ¹³³Cs NMR spectra at various temperatures from a solution of Cs metal in 5% v/v mixture of 15C5 and THF are shown in Fig. 12. In the lowesttemperature spectrum the signal at $\delta = +109 \,\mathrm{ppm}$ has been assigned largely, if not entirely, to the species Cs⁺(15C5)₂e⁻, because this shift is very similar to that measured for the solide electride Cs⁺(15C5)₂e^{-.76} If this signal does not arise entirely from this paramagnetic species, but rather represents a time-average of signals from both Cs⁺(15C5)₂e⁻ and Cs⁺(15C5)₂, then the observed shift suggests that the equilibrium (39) is well over to the right for the heavier inonophore. The spectrum at 193 K shows that the cation signal at $\delta = 109$ ppm has an integrated area x (x > 5) times greater than that of the Cs⁻ signal at $\delta = -280$ ppm. Hence the contributions to the widths of these peaks arising from lifetime limitation in the classic two-site exchange process would be in the ratio 1:x. Therefore, the major contribution to the width of the cation signal at this temperature cannot arise from direct exchange between the cation-based species and the Cs⁻ ion. On increasing the temperature, the cation signal broadens much more rapidly than the anion signal. If this broadening were to arise from the direct exchange process then the anion signal would have to broaden at a rate x times greater than the cation signal. This is not observed experimentally. Indeed, at 213 K the anion signal has almost the same width at that at 193 K, while the cation signal has broadened by some 50%. It has been concluded that the broadening of both cation and anion peaks over the entire temperature range does not arise from a classic two-site exchange process.

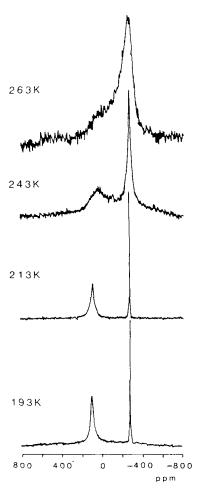


FIG. 12. Variable-temperature ¹³³Cs NMR spectra of solutions of caesium in a 15C5/tetrahydrofuran mixture (taken from Ref. 25 and used with permission).

Solutions that contain mixed alkali metals CsM (M = Na, K and Rb) in crown-ether (L)-THF solvent mixtures show ¹³³Cs NMR spectra that consist of only a single NMR line due to the complex cation Cs^+L_2 . Furthermore, ²³Na, ³⁹K, ⁸⁵Rb and ⁸⁷Rb NMR studies of the same solutions showed the presence of the Na⁻, K⁻ and Rb⁻ ions. This clearly reflects the greater thermodynamic stability, in these solutions, of each species $(Cs^+L_2)M^-$ compared with $(M^+L_2)Cs^-$. The temperature dependences of

the NMR characteristics $(\sigma, \Delta \nu_{1/2} \text{ and } T_{1n})$ of the Cs⁺ signals in these mixed-metal solutions were consistent with the assignment to Cs⁺L₂. Increasing the temperature leads to a substantial increase in the linewidth of the cation signal coupled with a very small low-frequency shift and decrease in the spin-lattice relaxation rates. For example, the Cs⁺(12C4)₂ NMR signal observed from CsNa solutions in 12C4/THF solvent mixture has $\delta = -22.4$ ppm, $\Delta \nu = 97$ Hz and $T_{1n} = 8.4$ ms at 198 K changing to $\delta = -26.4$ ppm, $\Delta \nu = 716$ Hz and $T_{1n} = 35.8$ ms at 243 K. No signal has been detected above 250 K. The decrease in the spin-lattice relaxation rate at higher temperatures is consistent with quadrupole relaxation for the cation-based signal in this system. However, the substantial increase in the linewidth suggests the presence of exchange processes. Clearly, direct exchange between Cs⁺ and, for example, Na⁻ is ruled out in these mixed-metal solutions.

V. OVERALL CONCLUSIONS

Both pure alkali metals and binary alloys formed from them dissolve in a wide range of non-aqueous solvents. In this work we have reviewed the NMR evidence for the existence of species of stoichiometry M⁻ in solutions prepared using either crown ethers or cryptands, possibly in association with another solvent.

The measurement of the chemical shift of the resonance of the species of stoichiometry M⁻ relative to that of the corresponding gaseous atom yields information on the nature of the species in solution. For all the members of a wide range of systems containing Na⁻ the chemical shifts are found to be identical with the completely reliable value computed for the gaseous sodium anion.

The agreement to within ± 1 ppm of the measured shielding in solution and the corresponding gaseous phase value provides very strong evidence that the Na $^-$ ion in solution interacts only very weakly with its environment. This is especially noticeable when it is remembered that the corresponding cation resonances in a wide range of solutions are deshielded with respect to the gaseous cation by some 62 ppm.

By contrast, the resonances assigned to the species K⁻, Rb⁻ and Cs⁻ are deshielded with respect to the corresponding gaseous anions, and the deshielding increases as one passes down the group 1A elements. The very appreciable deshielding of Rb⁻ and Cs⁻ with respect to the gaseous anions is evidence that both these species interact significantly with their environment.

For solutions of sodium metal and sodium/alkali alloys in 12-crown-4, an extensive series of measurements of the Na⁻ nuclear spin-lattice relaxation time as a function of temperature and composition revealed that the inefficient (quadrupole-dominated) nuclear relaxation originated from the fluctuations in the electric field gradients caused by the independent translational and reorientational motions of individual solvent molecules around the anion. In particular, the activation energies for the process governing the Na⁻ spin-lattice relaxation in all the 12-crown-4 solutions studied are identical, to within experimental error, with the activation energy governing both the ¹H and ¹³C nuclear spin relaxation in the pure solvent. It was also deduced that, for solutions in 12-crown-4, each Na⁻ ion does not exist as part of an ion pair and that the sodium anion is not subject to the continuous passage of other ions.

Comparison of the experimental spin-lattice relaxation times for Na-with rates of relaxation for other ions, suitably scaled to take account of differences in nuclear spins, quadrupole moments, Sternheimer antishielding factors and solvent viscosities, provides powerful evidence that Na- in these metal solutions is more decoupled from its environment than any of the other ions considered. This comparison, taken in conjunction with the chemical-shift evidence, shows that Na- exists in these solutions as a state very closely approximating to that of the gaseous species, the anion interacting only minimally with its surroundings.

For all the wide variety of sodium and sodium-alloy solutions in 12-crown-4, the spin-spin relaxation rates are considerably greater than the spin-lattice relaxation rates, and these differences in rates are used to deduce the lifetime of Na⁻ in these solutions as a function of temperature, composition and countercation. It is deduced from these measurements that the lifetime of Na⁻ is limited by quantum-mechanical tunnelling of one of the 3s valence electrons onto an uncomplexed alkali cation. The non-trivial temperature and counterion dependence of this process suggests that this lifetime limitation arises from the interplay between the first two of a number of equilibria envisaged as occurring in these metal solutions: these equilibria may be summarized as follows:

$$M^+L_2 \rightleftharpoons M^+ + 2L \tag{A}$$

$$Na^- + M^+ \rightarrow Na^+e^- + M^+e^-$$
 (B)

$$Na^+e^- + e^- \rightarrow Na^- \tag{C}$$

$$Na^+e^- + L_2 \rightleftharpoons (Na^+e^-)L_2 \tag{D}$$

$$(Na^+e^-)L_2 \rightleftharpoons Na^+L_2 + e^- \tag{E}$$

$$Na^{+}L_{2} + e^{-} \rightleftharpoons Na^{+}L_{2}e^{-} \tag{F}$$

$$M^+e^- \rightleftharpoons M^+ + e^- \tag{G}$$

$$M^+L_2 + e^- \rightleftharpoons M^+L_2e^- \tag{H}$$

The third process is simply the regeneration of Na⁻. This, as well as the processes (D)–(F) describing the other reactions undergone by sodium-based species, also occurs during the process of dissolving pure sodium metal in a crown solvent. Finally, the last two reactions (G) and (H) describe the fate of the species M⁺e⁻, having approximately 1% atomic character.

Although there is ESR evidence for both the atomic and the cation-based species postulated in the above equilibria, no NMR signals from such species have been detected from solutions in the neat 12-crown-4 solvent. However, NMR experiments on caesium metal dissolved in mixtures of 12-crown-4 and 15-crown-5 in tetrahydrofuran reveal the presence of both $Cs^+L_2e^-$ as well as Cs^+L_2 in these metal solutions.

In this review we hope to have illustrated the power of magnetic resonance techniques, both NMR and ESR, in gleaning information about the structure and dynamics of these intriguing alkali anions in solution.

ACKNOWLEDGMENT

We thank SERC for financial support.

REFERENCES

- 1. N. N. Greenwood and A. Earnshaw, *Chemistry of the Elements*, Pergamon Press, Oxford, 1984.
- 2. J. L. Dye, Prog. Inorg. Chem., 1984, 32, 327.
- 3. P. P. Edwards Adv. Inorg. Chem. Radiochem., 1982, 25, 135.
- 4. J. C. Thompson, Electrons in Liquid Ammonia, Clarendon Press, Oxford, 1976.
- R. Catterall, in *Metal Ammonia Solutions* (J. J. Lagowski and M. J. Sienko eds), p. 105, Butterworth, London, 1970.
- 6. N. W. Taylor and G. N. Lewis, Proc. Natl Acad. Sci. USA, 1925, 11, 456.
- 7. J. L. Dye, in *Metal Ammonia Solutions* (J. J Lagowski and M. S. Sienko eds), p. 1, Butterworth, London, 1970.
- 8. J. L. Dye, in *Electrons in Fluids* (J. J. Jortner and N. R. Kestner, eds), p. 77, Springer-Verlag, Berlin, 1972.
- 9. J. L. Dye, Angew. Chem. Int. Ed. Engl., 1979, 18, 587.
- 10. R. R. Dewald and J. L. Dye, J. Phys. Chem., 1964, 68, 121.
- 11. R. N. Edmonds, D. M. Holton and P. P. Edwards, J. Chem. Soc. Dalton Trans., 1986, 323.
- 12. S. Matalon, S. Golden and M. Ottolenghi, J. Phys. Chem., 1969, 73, 3098.
- T. A. Patterson, H. Hotop, A. Kashdan, D. W. Norcross and W. C. Lineberger, Phys. Rev. Lett., 1974, 32, 189.

- 14. J. L. Dye, M. T. Lock, F. J. Tehan, R. B. Coolen, N. Papadakis, J. M. Ceraso and M. G. De Backer, *Ber. Bungen Gesell. Physik. Chem.*, 1971, 75, 659.
- J. L. Dye, J. M. Ceraso, M. T. Cok, B. L. Barnett and F. J. Tehan, J. Am. Chem. Soc., 1974, 96, 608.
- 16. F. J. Tehan, B. L. Barnett and J. L. Dye, J. Am. Chem. Soc., 1974, 96, 7203.
- 17. J. L. Dye, C. W. Andrews and S. E. Mathews J. Phys. Chem., 1975, 79, 3065.
- 18. J. M. Ceraso and J. L. Dye, J. Phys. Chem., 1974, 61, 1585.
- A. S. Ellaboudy, M. O. Tinkham, B. Vaneck, J. L. Dye and P. B. Smith, J. Phys. Chem., 1984, 88, 3852.
- 20. M. L. Tinkham and J. L. Dye, J. Am. Chem. Soc., 1985, 107, 6129.
- 21. P. P. Edwards, A. S. Ellaboudy and D. M. Holton, Nature, 1985, 317, 242.
- 22. J. L. Dye, C. W. Andrews and J. M. Ceraso, J. Phys. Chem., 1975, 79, 3076.
- D. M. Holton, P. P. Edwards, D. C. Johnson, C. J. Page, W. McFarlane and B. Wood, J. Chem. Soc., 1984, 740.
- 24. M. L. Tinkham, A. S. Ellaboudy, J. L. Dye and P. B. Smith, J. Phys. Chem., 1986, 90, 14.
- 25. A. S. Ellaboudy, N. C. Pyper and P. P. Edwards, 1987, J. Am. Chem. Soc., 1987, in press.
- D. M. Holton, A. Ellaboudy, N. C. Pyper and P. P. Edwards, J. Chem. Phys., 1986, 84, 1089.
- 27. A. S. Ellaboudy, D. M. Holton, R. N. Edmonds and P. P. Edwards, J. Chem. Soc. Chem. Commun., 1986, 1444.
- 28. A. S. Ellaboudy, D. M. Holton, N. C. Pyper and P. P. Edwards, J. Phys. Chem., 1987, submitted.
- 29. C. J. Pederson, J. Am. Chem. Soc., 1967, 89, 7017.
- P. P. Edwards, S. C. Guy, D. M. Holton and W. McFarlane, J. Chem. Soc. Chem. Commun., 1981, 1185.
- P. P. Edwards, S. C. Guy, D. M. Holton, D. C. Johnson, W. McFarlane and B. Wood, J. Phys. Chem., 1983, 87, 4362.
- D. M. Holton, P. P. Edwards, D. C. Johnson, C. J. Page, W. McFarlane and B. J. Wood, J. Am. Chem. Soc., 1987, 107, 6499.
- 33. W. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 1975, 4, 539, and refs. therein.
- 34. N. C. Pyper and P. P. Edwards, J. Am. Chem. Soc., 1986, 108, 78.
- 35. C. W. White, W. M. Hughes, G. S. Hayne and H. G. Robinson, *Phys. Rev.*, 1968, 174, 23.
- G. S. Hayne, C. W. White, W. M. Hughes and H. G. Robinson, *Bull. Am. Phys. Soc.*, 1968, 13, 20.
- 37. A. Beckmann, K. D. Bolken and D. Elke Z. Phys., 1974, 270, 173.
- 38. O. Lutz, Phys. Lett., 1967, 25A, 440.
- 39. O. Lutz, Z. Naturforsch. Tech., 1968, 23a, 1202.
- 40. O. Lutz and A. Schweuk, Phys. Lett., 1967, 24A, 122.
- 41. C. Deverell and R. E. Richards, Mol. Phys., 1966, 10, 551.
- 42. N. F. Ramsey, Phys. Rev., 1950, 78, 699.
- 43. N. C. Pyper, J. Phys., 1985, **B18**, 1317.
- 44. E. A. Hylleraas and S. Skavlem, Phys. Rev., 1950, 79, 117.
- 45. C. Froese-Fischen, The Hartree-Fock Method for Atoms, Wiley, New York, 1977.
- I. P. Grant, B. J. McKenzie, P. H. Nomington, D. F. Mayers and N. C. Pyper, Comp. Phys. Commun., 1980, 21, 207.
- 47. A. Mazziotti, Chem. Phys. Lett., 1970, 5, 343.
- 48. A. Mehrotra and K. M. S. Saxena, Can. J. Phys., 1976, 53, 97.
- 49. G. L. Malli and S. Fraga, Theoret. Chim. Acta, 1966, 5, 275.

- 50. S. J. Davis, J. J. Wright and L. C. Balling, Phys. Rev., 1974, A9, 1494.
- E. I. Obiajunwa, S. A. Adebiyi, E. A. Togun and A. F. Oluwole, J. Phys., 1983, B16, 2733.
- 52. A. F. Oluwole, *Physica Scripta*, 1977, **15**, 339.
- R. N. Edmonds, S. C. Guy, P. P. Edwards and D. C. Johnson, J. Phys. Chem., 1984, 88, 3764.
- J. A. Pople, W. G. Schneider, and H. J. Beinstein, High Resolution Nuclear Magnetic Resonance, McGraw Hill, New York, 1959.
- R. K. Harris and B. E. Mann, NMR and the Periodic Table, Academic Press, London, 1978.
- 56. Landolt-Bornstein, 1973, Series 3, Vol. 7, Part b.
- 57. A. Carrington and A. D. McLachan, The Principles of Magnetic Resonance, 1967.
- 58. F. W. Wehroli, J. Magn. Reson, 1976, 23, 527.
- 59. H. G. Hertz, Ber. Bunsenges. Phys. Chem., 1973, 77, 531.
- 60. C. A. Melendres and H. G. Hertz, J. Chem. Phys., 1974, 61, 4156.
- 61. A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, 1961.
- 62. A. S. Ellaboudy and J. L. Dye, J. Magn. Reson., 1986, 66, 491.
- A. S. Ellaboudy, D. M. Holton, N. C. Pyper, P. P. Edwards, B. Wood and W. McFarlane, Nature, 1986, 321, 684.
- 64. R. M. Steinheimer, Phys. Rev., 1966, 146, 140.
- 65. J. H. Loehlin and A. Kwick, Acta Crystallogr., 1978, B34, 3488.
- M. Yukasaka, J. Sugawara, H. Iwamura and J. Fujiyama, Bull. Chem. Soc. Jpn, 1981, 54, 1933.
- 67. R. C. Phillips, S. Khazasli and J. L. Dye, J. Phys. Chem., 1985, 89, 600.
- R. D. Dreisback, *Physical Properties of Chemical Compounds—III*, p. 289, Advances in Chemistry Series No. 29, American Chemical Society, Washington, D.C., 1961.
- 69. R. C. Phillips, S. Khazaeli and J. L. Dye, J. Phys. Chem., 1985, 89, 606.
- 70. J. P. Van Remoortere, and J. P. Bres, *Inorg. Chem.*, 1974, 13, 2071.
- 71. The Aldrich Library of NMR Spectra 1983, 2nd Edn. (C. J. Puche, ed.), Vol. I, p. 211.
- 72. J. W. Fletcher and W. A. Seddon, J. Phys. Chem., 1975, 79, 3055.
- D. M. Holton, A. S. Ellaboudy, R. N. Edmonds and P. P. Edwards, *Proc. R. Soc. Lond.*, 1987, in press.
- Z. Jedlinski, A. Stolarzewicz, Z. Grobelny and M. Szwarc, J. Phys. Chem., 1984, 88, 6094
- 75. R. Catterall and P. P. Edwards, J. Phys. Chem., 1975, 79, 3010.
- 76. A. S. Ellaboudy and J. L. Dye, Private communication, 1987.

Index

Acer pseudoplatanus, 38	¹¹ Boron
²⁷ Al NMR, 65, 66, 168–169	alkenylborane-metal complexes,
Alkali anions (M ⁻) in non-aqueous	150–151
solvents	alkylboranes, 225–229
chemical dynamics	alkylborohydride, 231
caesium-based species, 357–362	(amine) ₂ BF ₂ cations, 211
sodium anion, 348–357	amino-acid analogues, 209
nuclear shielding, 318–332	aminoboron cations, 70
assignment of the resonance,	amino-diorganylboranes, 87–90
318–326	amino(methylene)borane, 73
deduction of nature of M ⁻ in	analogues, pharmacologically-
solution, 331–332	active compounds, 209
gaseous alkali ions, 327–331	bis(amido)boron, nuclear shielding,
gaseous neutral atoms, 326-327	73
summary, 332	bis(chloroboryl)alkanes, 228
solution structure of Na ⁻ , 332–348	1-bora-adamantanes and nonanes,
experimental results, 332-334	220
quadrupolar relaxation, 338–346	borabenzene-metal complexes,
theoretical considerations, 334–338	152–153
summary, 346-348	boranes
Alkali cations, complexed/	¹⁰ B, ²⁷ Al and ⁷¹ Ga, 168–169
uncomplexed, 352	bridging ligands, 71
Alkali metals, optical absorption	¹³ C, 169–173
spectra, 316–317	¹³ C, 169–173 ¹⁹ F, ³⁵ Cl and ³⁷ Cl, 180
Ammonium nitrate solutions, proton	Li and Li, 168
exchange, 42	^{14}N and ^{15}N , 175–177
ATP consumption, assessment, 50	17 O and 77 Se, 178–179
ATP synthesis, 34–37	³¹ P, 178
and Pi consumption, 51	²⁹ Si, ¹¹⁹ Sn and ²⁰⁷ Pb, 174–175
in yeast, 51	shifts in heteroatom boranes, 233
ATP-ase, inhibition by DCCD, 36–37	transition metal, 181
	borates, 149
	with boron-element bonds,
	145–147
BAPTA, 22-26	borirane-2-ylideneborane, 73
and 5FBAPTA, 27, 33	borole-metal complexes, 154–156
Beads, microcarrier, 5	boron-containing heterocycles,
⁹ Be NMR, 168	219–225
Block equations, 44	boron-element complexes, 158
Boltzmann equilibrium, 44	boronium salts, chemical shifts, 210
Boron 44	borylidene-boriranes, 71 carbaboranes
boranes, 168–169	classical/non-classical bonding, 70
NMR, 168–169	cationic boron compounds, 209–211
nuclear referencing, 66	tetra co-ordinate, 141
	icua co-orumate, 141

¹¹ Boron (cont.)	1:::141
chelate complexes, 139–140	linewidths, 67
	magnitude of substituent effects,
compounds, frequently encountered	71–160
nuclei (table), 66	and ¹⁴ N, iminoboranes, 72
coupled boranes and carboranes,	referencing, 63–64
294–298	studies of solids, 302–305
diborabenzene-metal complexes,	two-dimensional NMR
153–154	spectroscopy, 206–208, 288
diboranes, 114–117, 125–127	one-boron compounds, 209–232
compounds, 227	alkylboranes, 225–229
diboranes (6) and μ -diboranes,	analogues of pharmacologically
127, 148	active compounds, 209
1,3-diborole-, 1,2,5-thiadiborole and	boron-containing heterocycles,
1,2-azaborole-metal complexes,	219–225
156–158	cationic boron compounds, 209–211
1,3-dihydro-1,3-diboretes, 71	compounds with multiple bonds,
dimeric and trimeric boranes, 137–138	212–217
diorganylboron compounds, 119–122	pyrazaboles, 217–219
-halides, 83–84	other one-boron compounds,
-hydrides, 82	229–232
-oxygen, 84–85	organofluorohydroxyborane, 231
-selenium, 86	organylborane adducts, 227
sulphur, 86	organylborates and zwitterionic
halides, and amine complexes,	adducts, 142-144
230–231	organylboron-oxygen compounds,
halogeno-organylboranes, 90–91	92–93
iminoboranes, 69, 72	organyl-selenium compounds, 94
adducts, shifts, 214	organyl-sulphur compounds, 94
Lewis-base-borane adducts,	organylboron π complexes, 149–160
128–136, 148–149	organylboron-nitrogen compounds
metal borates, 147–148, 149	cyclic, 96–101
metalloboranes, metallocarboranes	non-cyclic, 95–96
B ₁ , 254–259	phosphorylaminoboranes, 231
B _{2,3,4,} , 259–263	polyboranes and carboranes
B _{5,7,8} , 263–274	$B_{2,3}$, 233–235
B ₉ , 275–285	B ₄ , 235–237
B ₁₀ and larger, 285–298	B ₅ , 237–240
metalloboranes	B _{6,8,9} , 240–251
NMR data, 281–282	$B_{10,11,12}, 251-254$
metallocarboranes	pyrazaboles, 217–219
¹ H and ¹¹ B correlations, 277–278	silicon-containing substituents, 231
NMR data, 281	silylboranes, 74
structures, 274, 275, 280, 281	small-ring boron compounds,
monoorganyl boranes, 122-125	212–217
multiple bonds to boron, 212–217	stannacarboranes, 237
NMR, 63–65	tetracoordinate boron, 127, 148–149,
analytical applications, 208	159–160
chemical shifts, 68–71	three-cordinate boron, 74, 118–127
classical/non-classical, 71	boranes, diboranes, 125–127
indirect nuclear spin-spin couplings,	monorganylboranes, 122–125
160–168	diorganylboranes, 119–112

triorganylboranes, 74, 118 transition-metal complexes, boroncontaining heterocycles, 299–302 trigonal boranes without B—C bonds, 102–114, 125 BX ₃ , 102–104 BX ₂ Y, BXY ₂ , BXYZ, 105–112 triorganylboranes, 75–82, 227	Depth-resolved surface-coil spectroscopy (DRESS), 17 Dictostelium discoideum, 38 Dicyclohexylcarbodiimide (DCCD) sensitivity of ATP, 36, 42 Difluoromethylalanine, 32–33
two-coordinate, 72–74 Brain tissue damage, in neonates, 41 superfusion, 43–46	Enzyme kinetics inversion-transfer experiments, 46–47 magnetization-transfer methods, 42, 49–51 saturation-transfer methods, 42, 43–46
¹³ C NMR, 64–65, 169–173 boranes alkenyl-, 172 alkynyl-, 172 organo-, 170–172 phenyl-, 172 ¹ H-decoupled, 173 titratable resonances, 32	two-dimensional exchange experiments, 47–48 Erlich ascites tumour cells, 23, 24 Erythrocytes, NAD concentrations, 41–42 Escherichia coli phosphorylations, 32 Pi consumption, 42 EXORCYCLE scheme, 16
Calcium indicators, 22–26 Carnosine, as pH indicator, 32–33 Catharanthus roseus, 38 Cations, intracellular, determination, 21–22	¹⁹ F NMR, 22, 32–33, 66, 180
Cells, sample preparation, 3–7 Chlorella fusca, compartmentation, pH, 39 35Cl, 37Cl NMR, 180 nuclear referencing, 66	pH indicator, 32–33 spin-½ nuclei, 65 Fasciola hepatica, 7 FCCP, uncoupling effect, 37 Field focusing nuclear magnetic
⁵⁹ Co, nuclear referencing, 66 COSY correlations, 234–235 2D COSY decoupling, 243, 248	resonance (FONAR), 14 Fourier imaging methods, 19–21
Creatine kinase, magnetization- transfer methods, 49–50 Creatine phosphotransferase determination, 43–46	⁷¹ Ga NMR, 168, 169
Crown-ethers, 316–318 133 Cs NMR, 357–362 M*/M*-, 319, 321–324 nuclear shielding, 326, 330	¹ H NMR, 3 nuclear referencing, 66 spin-echo, 41 Halogens nuclear quadrupole moments, 339 Sternheimer antishielding factors,
D ₂ O, as solvent, 41–42 DANTE pulse sequence, 46–47 Debye equation, 337, 348	339, 341 spin-lattice relaxation rates, 340 Hartree–Fock wave-functions, 327–330

Magnetic-resonance imaging (MRI)

clinical uses, 39-41

development, 2

Heart Magnetization-transfer methods, 42, anoxia and acidosis, 41 49-51 creatine kinase rate constants, 50 mitochondrial/myofibril perfusion techniques, 9-12 compartmentation, 49 resting Ca²⁺ levels, 25 Metal ion measurement, living systems. saturation-transfer methods, 49 21 - 41²⁵Mg NMR, 26 see also Organs Hellmann-Feynman theorem, 328 indicators, 26-28 Heptamethylbenzenonium, 48 Microcarrier beads, 5 Mitchell hypothesis, 33, 34 Muscle Image selective in vivo spectroscopy anaerobic exercise, 40 (ISIS), 19 phosphorylase kinase deficiency, 41 INDO calculations, 70 sample preparation, 7-12 INEPT pulse sequence, 65 see also Organs Inversion-transfer experiments, 42, 46-47 ¹⁴N NMR, 65, 175–177 ³⁹K in living systems, 28–30 iminoboranes, 72 nuclear referencing, 66 ³⁹K NMR, 28 ¹⁵N NMR, 175–177 M^+/M^- , 319, 321–324 ²³Na NMR, 28–30 nuclear shielding, 326, 330 M^+/M^- , 319, 321–324 Kidney, perfusion techniques, 10–11 nuclear shielding, 326, 330 see also Organs Na⁻/Na⁺, NMR line widths, 345 Na⁻ chemical dynamics, 348-357 Lactate dehydrogenase (LDH), quadrupolar relaxation, 338-348 reaction, 41-42 ⁷Li NMR, 168 solution structure, 332-348 spin-lattice relaxation times, 333 nuclear referencing, 66 spin-lattice/spin-spin relaxation times, nuclear shielding, 330 Liver, perfusion techniques, 10-11 structure in solution (diagram), 347 see also Organs NAD-dependent conversions, 41 Living systems Narrowband localization of excitation enzyme kinetics, 41-51 (NOBLE), 16 localization methods, 13-21 Neonatal brain damage, 41 measurement of intracellular cations. Nicotiana tabacum, 38 21 - 41Nuclear magnetic resonance (NMR) sample preparation, 3-12 metal-ammonia solutions, 315-317 Localized spectroscopy, 14-19 nuclear properties, etc. (table), 66 surface coils, 14-16 transition metal nuclei, 181 topical magnetic resistance, 16-17 variable-angle sample-spinning volume-selective excitation, 17-19 (VASS), 304 Lolium multiflorum, 38 see also specific elements Nuclear-spin relaxation, 65-68 McArdle's syndrome, 40

> ¹⁷O, NMR, 65, 178–179 nuclear referencing, 66

Organs, and intact animals localization methods, 13–21 non-perfusion techniques, 7–8 perfusion techniques, 9–12 sample preparation, 7–12 spectroscopic imaging, 19–21 intracellular cations, measurement, 21–41	⁸⁷ Rb NMR M ⁺ /M ⁻ , 319, 321–324 nuclear shielding, 326, 330 ¹⁰³ Rh nuclear referencing, 66 Rhodopseudomonas sphaeroides, 36, 37
31P/15N double resonance spin-echo, 42 31P NMR, 30–32, 40, 178 clinical spectroscopy, 40 nuclear referencing, 66 physiological measurement, 77 spin-½ nuclei, 65 207Pb NMR, 66, 175 pH artificial probes, 32 gradient, light-induced, in bacteria, 36–37 homeostasis and compartmentation, 37–39 intra-cellular measurements, 30–33 measurement in tissues, 39–41 Phosphate, inorganic (Pi), 30–32 γ-ATP exchange, 51 consumption, unidirectional rate, 42, 49–51 in mitochondrial matrix, 38 vacuolar resonance, 38–39 Phosphocreatine resonance, 45, 47 'shuttle' hypothesis, 49–50 Phosphorylase-a deficiency, 40 Pi, see Phosphate, inorganic Proton pumps, 33–37 195Pt NMR, 66, 181 metalloboranes, 292, 295	Saturation-transfer methods, 42, 43–46 creatine kinase studies, 49–50 multiple saturation-transfer, 50–51 TSe NMR, 66, 179 Shuttle' hypothesis, 49 Si NMR, 174 Sn NMR, 174, 175 Sodium NMR, in living systems, 28–30 see also Na ⁺ ; Na Spin polarization-transfer techniques, 65 Sternheimer antishielding factors, 339, 341 Stokes equation, 337 Surface coils, 14–16 Tensition metals, 14–16 Transition metals, NMR, 181 Transplant organs, 7 Two-dimensional exchange experiments, 47–48 Volume-selective excitation, 17–19
Ramsey theory nuclear shielding, 327-328 terminology, 5, 68	Zinc indicators, 22–25

This Page Intentionally Left Blank

Cumulative index of topics covered in Volumes 11-20 of this series

Boron compounds containing two-, three-, and four-coordinate boron, NMR

Alkali anions in non-aqueous solvents, NMR studies of, 20, 315

Alkaloids, NMR of, 13, 60

spectroscopy of, 20, 61

Amino acids, NMR of, 11A, 2, 16, 2

```
Boron-11 NMR spectroscopy, 12, 177, 20, 205
Calcium, NMR in chemistry of biology, 11A, 183
Carbon-carbon coupling constants: discussion, 11A, 66
  data, 11A, 99
Carbon-13 NMR spectroscopy of Group VIII metal complexes, 11A, 227
Cyclophosphazenes, NMR of, 19, 175
Dynamic NMR spectroscopy in inorganic and organometallic chemistry, 12, 263,
Fluorine-19 NMR spectroscopy (1979–1981), 14, 3
Gases, high-resolution NMR of, 19, 35
Group VIII metal complexes, carbon-13 NMR of, 11A, 227
Haem proteins, paramagnetic, NMR spectroscopy of, 17, 79
High-resolution NMR, of liquids and gases: effects of magnetic-field-induced
  molecular alignment, 19.35
  of solids, 12, 1
Isomerization processes involving N-X bonds, 16, 187
Isotope effects on nuclear shielding, 15, 106
  theoretical aspects of, 17, 1
Liquids, high-resolution NMR of, 19, 35
Living systems, NMR spectroscopy of, 20, 1
Macromolecules in solution, nuclear magnetic relaxation and models for backbones.
  motions of, 17, 179
Magnesium NMR in chemistry and biology, 11A, 183
Monosaccharides, NMR spectroscopy in the study of, 13, 2
Multiple resonance, 16, 293
Nitrogen NMR spectroscopy, 11B, 2, 18, 3
Non-aqueous solvents, NMR studies of alkali anions in, 20, 315
Nuclear magnetic relaxation, and models for backbone motions of macromolecules
  in solutions, 17, 179
  rotational correlation times in. 13, 320
Nuclear shielding, isotope effects on, 15, 106
  substituent effects on, 15, 2
  theoretical aspects of isotope effects on, 17, 1
Nuclear spin-spin couplings, calculations of, 12, 82
N-X bonds, isomerization processes involving, 16, 187
Oligosaccharides, NMR spectroscopy in the study of, 13, 2
Organic compounds adsorbed on porous solids, NMR of, 15, 291
Paramagnetic haem proteins, NMR spectroscopy of, 17, 79
Peptides, NMR of, 11A, 2, 16, 2
                                       373
```

Platinum NMR spectroscopy, 17, 285
Porous solids, NMR of organic compounds adsorbed on, 15, 291
Proteins, NMR of, 11A, 2, 16, 2
Quadrupolar nuclei, less common, NMR of, 17, 231
Rotational correlation times in nuclear magnetic relaxation, 13, 320
Silicon-29 NMR spectroscopy, recent advances in, 15, 235
Solids, high-resolution NMR of, 12, 1
Sulphur-33 NMR spectroscopy of, 19, 1
Thallium NMR spectroscopy, 13, 211
Tin-119 NMR parameters, 16, 73

Cumulative index of authors who have contributed to Volumes 11–20

Bastiaan, E. W., 19, 35 Bock, K., 13, 2 Boeré, R. T., 13, 320 Bothner-By, A. A., 19, 35 Briggs, R. W., 13, 211

Crabb, T. A., 13, 60 Craik, D. J., 15, 2

Deininger, D., 15, 291 Drakenberg, T., 17, 231

Edwards, P. P., 20, 315 Ellaboudy, A., 20, 315

Forsén, S., 11A, 183 Fyfe, C. A., 12, 1

Hansen, P. E., 11A, 66, 99, 15, 106 Heatley, F., 17, 179 Hinton, J. F., 13, 211, 19, 1 Holton, D. M., 20, 315

Jameson, C. J., 17, 1

Kidd, R. G., 13, 320 Kowalewski, J., 12, 82 Krishnamurthy, S. S., 19, 175

Lindman, B., 11A, 183

Mann, B. E., 12, 263 Martin, G. J., 16, 187 Martin, M. L., 16, 187 McFarlane, W., 16, 293 McLean, C., 19, 35 Meiler, W., 15, 291 Metz, K. R., 13, 211 Morris, P. G., 20, 1

Orrell, K. G., 19, 79 Osten, H. J., 17, 1

Pfeifer, H., 15, 291 Pregosin, P. S., 11A, 227, 17, 285 Pyper, N. C., 20, 315

Rattle, H. W. E., 11A, 2, 16, 2 Rycroft, D. S., 16, 293

Satterlee, J. D., 17, 79 Siedle, A. R., 12, 177, 20, 205 Sik, V., 19, 79 Stefaniak, L., 11B, 2, 18, 3 Sun, X. Y., 16, 187

Thøgerson, H., 13, 2

van Zijl, P. C. M., 19, 35

Wasylishen, R. E., 12, 1 Webb, G. A., 11B, 2, 18, 3 Williams, E. A., 15, 235 Witanowski, M., 11B, 2, 18, 3 Woods, M., 19, 175 Wrackmeyer, B., 16, 73, 20, 61 Wray, V., 11A, 99, 14, 3 This Page Intentionally Left Blank